
Introduction to
Assembly Language

COE 205
Computer Organization and Assembly Language

Dr. Aiman El-Maleh

College of Computer Sciences and Engineering
King Fahd University of Petroleum and Minerals

[Adapted from slides of Dr. Kip Irvine: Assembly Language for Intel-Based Computers]

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 2

Presentation Outline

Basic Elements of Assembly Language

Flat Memory Program Template

Example: Adding and Subtracting Integers

Assembling, Linking, and Debugging Programs

Defining Data

Defining Symbolic Constants

Data-Related Operators and Directives

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 3

Constants
Integer Constants

Examples: –10, 42d, 10001101b, 0FF3Ah, 777o

Radix: b = binary, d = decimal, h = hexadecimal, and o = octal

If no radix is given, the integer constant is decimal

A hexadecimal beginning with a letter must have a leading 0

Character and String Constants
Enclose character or string in single or double quotes

Examples: 'A', "d", 'ABC', "ABC", '4096'

Embedded quotes: "single quote ' inside", 'double quote " inside'

Each ASCII character occupies a single byte

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 4

Assembly Language Statements
Three types of statements in assembly language

Typically, one statement should appear on a line

1. Executable Instructions
Generate machine code for the processor to execute at runtime
Instructions tell the processor what to do

2. Assembler Directives
Provide information to the assembler while translating a program
Used to define data, select memory model, etc.
Non-executable: directives are not part of instruction set

3. Macros
Shorthand notation for a group of statements
Sequence of instructions, directives, or other macros

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 5

Instructions
Assembly language instructions have the format:
[label:] mnemonic [operands] [;comment]

Instruction Label (optional)
Marks the address of an instruction, must have a colon :
Used to transfer program execution to a labeled instruction

Mnemonic
Identifies the operation (e.g. MOV, ADD, SUB, JMP, CALL)

Operands
Specify the data required by the operation

Executable instructions can have zero to three operands

Operands can be registers, memory variables, or constants

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 6

No operands
stc ; set carry flag

One operand
inc eax ; increment register eax

call Clrscr ; call procedure Clrscr

jmp L1 ; jump to instruction with label L1

Two operands
add ebx, ecx ; register ebx = ebx + ecx

sub var1, 25 ; memory variable var1 = var1 - 25

Three operands
imul eax,ebx,5 ; register eax = ebx * 5

Instruction Examples

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 7

Identifiers
Identifier is a programmer chosen name

Identifies variable, constant, procedure, code label

May contain between 1 and 247 characters

Not case sensitive

First character must be a letter (A..Z, a..z),
underscore(_), @, ?, or $.

Subsequent characters may also be digits.

Cannot be same as assembler reserved word.

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 8

Comments
Comments are very important!

Explain the program's purpose

When it was written, revised, and by whom

Explain data used in the program

Explain instruction sequences and algorithms used

Application-specific explanations

Single-line comments
Begin with a semicolon ; and terminate at end of line

Multi-line comments
Begin with COMMENT directive and a chosen character

End with the same chosen character

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 9

Next . . .

Basic Elements of Assembly Language

Flat Memory Program Template

Example: Adding and Subtracting Integers

Assembling, Linking, and Debugging Programs

Defining Data

Defining Symbolic Constants

Data-Related Operators and Directives

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 10

Flat Memory Program Template
TITLE Flat Memory Program Template (Template.asm)

; Program Description:
; Author: Creation Date:
; Modified by: Modification Date:

.686

.MODEL FLAT, STDCALL

.STACK

INCLUDE Irvine32.inc
.DATA

; (insert variables here)
.CODE
main PROC

; (insert executable instructions here)
exit

main ENDP
; (insert additional procedures here)

END main

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 11

TITLE and .MODEL Directives
TITLE line (optional)

Contains a brief heading of the program and the disk file name

.MODEL directive
Specifies the memory configuration
For our purposes, the FLAT memory model will be used

Linear 32-bit address space (no segmentation)

STDCALL directive tells the assembler to use …
Standard conventions for names and procedure calls

.686 processor directive
Used before the .MODEL directive
Program can use instructions of Pentium P6 architecture
At least the .386 directive should be used with the FLAT model

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 12

.STACK, .DATA, & .CODE Directives
.STACK directive

Tells the assembler to define a runtime stack for the program

The size of the stack can be optionally specified by this directive

The runtime stack is required for procedure calls

.DATA directive
Defines an area in memory for the program data

The program's variables should be defined under this directive

Assembler will allocate and initialize the storage of variables

.CODE directive
Defines the code section of a program containing instructions

Assembler will place the instructions in the code area in memory

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 13

INCLUDE, PROC, ENDP, and END
INCLUDE directive

Causes the assembler to include code from another file
We will include Irvine32.inc provided by the author Kip Irvine

Declares procedures implemented in the Irvine32.lib library
To use this library, you should link Irvine32.lib to your programs

PROC and ENDP directives
Used to define procedures
As a convention, we will define main as the first procedure
Additional procedures can be defined after main

END directive
Marks the end of a program
Identifies the name (main) of the program’s startup procedure

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 14

Next . . .

Basic Elements of Assembly Language

Flat Memory Program Template

Example: Adding and Subtracting Integers

Assembling, Linking, and Debugging Programs

Defining Data

Defining Symbolic Constants

Data-Related Operators and Directives

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 15

TITLE Add and Subtract (AddSub.asm)
; This program adds and subtracts 32-bit integers.
.686
.MODEL FLAT, STDCALL
.STACK
INCLUDE Irvine32.inc

.CODE
main PROC

mov eax,10000h ; EAX = 10000h
add eax,40000h ; EAX = 50000h
sub eax,20000h ; EAX = 30000h
call DumpRegs ; display registers
exit

main ENDP
END main

Adding and Subtracting Integers

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 16

Example of Console Output

Procedure DumpRegs is defined in Irvine32.lib library

It produces the following console output,

showing registers and flags:

EAX=00030000 EBX=7FFDF000 ECX=00000101 EDX=FFFFFFFF

ESI=00000000 EDI=00000000 EBP=0012FFF0 ESP=0012FFC4

EIP=00401024 EFL=00000206 CF=0 SF=0 ZF=0 OF=0

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 17

Suggested Coding Standards
Some approaches to capitalization

Capitalize nothing
Capitalize everything
Capitalize all reserved words, mnemonics and register names
Capitalize only directives and operators
MASM is NOT case sensitive: does not matter what case is used

Other suggestions
Use meaningful identifier names
Use blank lines between procedures
Use indentation and spacing to align instructions and comments

Use tabs to indent instructions, but do not indent labels
Align the comments that appear after the instructions

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 18

Understanding Program Termination
The exit at the end of main procedure is a macro

Defined in Irvine32.inc
Expanded into a call to ExitProcess that terminates the program
ExitProcess function is defined in the kernel32 library
We can replace exit with the following:
push 0 ; push parameter 0 on stack

call ExitProcess ; to terminate program

You can also replace exit with: INVOKE ExitProcess, 0

PROTO directive (Prototypes)
Declares a procedure used by a program and defined elsewhere
ExitProcess PROTO, ExitCode:DWORD

Specifies the parameters and types of a given procedure

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 19

Modified Program
TITLE Add and Subtract (AddSubAlt.asm)
; This program adds and subtracts 32-bit integers

.686

.MODEL flat,stdcall

.STACK 4096

; No need to include Irvine32.inc
ExitProcess PROTO, dwExitCode:DWORD

.code
main PROC

mov eax,10000h ; EAX = 10000h
add eax,40000h ; EAX = 50000h
sub eax,20000h ; EAX = 30000h

push 0
call ExitProcess ; to terminate program

main ENDP
END main

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 20

Next . . .

Basic Elements of Assembly Language

Flat Memory Program Template

Example: Adding and Subtracting Integers

Assembling, Linking, and Debugging Programs

Defining Data

Defining Symbolic Constants

Data-Related Operators and Directives

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 21

Assemble-Link-Debug Cycle
Editor

Write new (.asm) programs
Make changes to existing ones

Assembler: ML.exe program
Translate (.asm) file into object
(.obj) file in machine language
Can produce a listing (.lst) file
that shows the work of assembler

Linker: LINK32.exe program
Combine object (.obj) files with
link library (.lib) files
Produce executable (.exe) file
Can produce optional (.map) file

Edit

Assemble

Link

Run

prog.asm

prog.obj prog.lst

prog.exe prog.map

library.lib

Debug

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 22

Assemble-Link-Debug Cycle – cont'd
MAKE32.bat

Batch command file
Assemble and link in one step

Debugger: WINDBG.exe
Trace program execution

Either step-by-step, or
Use breakpoints

View
Source (.asm) code
Registers
Memory by name & by address
Modify register & memory content

Discover errors and go back to the editor to fix the program bugs

Edit

Assemble

Link

Run

prog.asm

prog.obj prog.lst

prog.exe prog.map

library.lib

Debug

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 23

Listing File
Use it to see how your program is assembled

Contains
Source code

Object code

Relative addresses

Segment names

Symbols

Variables

Procedures

Constants

Object & source code in a listing file
00000000 .code
00000000 main PROC
00000000 B8 00060000 mov eax, 60000h
00000005 05 00080000 add eax, 80000h
0000000A 2D 00020000 sub eax, 20000h

0000000F 6A 00 push 0
00000011 E8 00000000 E call ExitProcess
00000016 main ENDP

END main

object code
(hexadecimal)

source codeRelative
Addresses

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 24

Next . . .

Basic Elements of Assembly Language

Flat Memory Program Template

Example: Adding and Subtracting Integers

Assembling, Linking, and Debugging Programs

Defining Data

Defining Symbolic Constants

Data-Related Operators and Directives

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 25

BYTE, SBYTE
8-bit unsigned integer
8-bit signed integer

WORD, SWORD
16-bit unsigned integer
16-bit signed integer

DWORD, SDWORD
32-bit unsigned integer
32-bit signed integer

QWORD, TBYTE
64-bit integer
80-bit integer

REAL4
IEEE single-precision float
Occupies 4 bytes

REAL8
IEEE double-precision
Occupies 8 bytes

REAL10
IEEE extended-precision
Occupies 10 bytes

Intrinsic Data Types

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 26

Data Definition Statement
Sets aside storage in memory for a variable

May optionally assign a name (label) to the data

Syntax:

[name] directive initializer [, initializer] . . .

val1 BYTE 10

All initializers become binary data in memory

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 27

Defining BYTE and SBYTE Data

value1 BYTE 'A' ; character constant

value2 BYTE 0 ; smallest unsigned byte

value3 BYTE 255 ; largest unsigned byte

value4 SBYTE -128 ; smallest signed byte

value5 SBYTE +127 ; largest signed byte

value6 BYTE ? ; uninitialized byte

Each of the following defines a single byte of storage:

• MASM does not prevent you from initializing a BYTE with a
negative value, but it's considered poor style.

• If you declare a SBYTE variable, the Microsoft debugger will
automatically display its value in decimal with a leading sign.

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 28

Defining Byte Arrays

list1 BYTE 10,20,30,40

list2 BYTE 10,20,30,40

BYTE 50,60,70,80

BYTE 81,82,83,84

list3 BYTE ?,32,41h,00100010b

list4 BYTE 0Ah,20h,'A',22h

Examples that use multiple initializers

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 29

Defining Strings
A string is implemented as an array of characters

For convenience, it is usually enclosed in quotation marks

It is often terminated with a NULL char (byte value = 0)

Examples:

str1 BYTE "Enter your name", 0

str2 BYTE 'Error: halting program', 0

str3 BYTE 'A','E','I','O','U'

greeting BYTE "Welcome to the Encryption "

BYTE "Demo Program", 0

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 30

Defining Strings – cont'd
To continue a single string across multiple lines, end
each line with a comma

menu BYTE "Checking Account",0dh,0ah,0dh,0ah,
"1. Create a new account",0dh,0ah,
"2. Open an existing account",0dh,0ah,
"3. Credit the account",0dh,0ah,
"4. Debit the account",0dh,0ah,
"5. Exit",0ah,0ah,
"Choice> ",0

End-of-line character sequence:
0Dh = 13 = carriage return

0Ah = 10 = line feed

Idea: Define all strings
used by your program
in the same area of the

data segment

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 31

Using the DUP Operator
Use DUP to allocate space for an array or string

Advantage: more compact than using a list of initializers

Syntax
counter DUP (argument)

Counter and argument must be constants expressions

The DUP operator may also be nested

var1 BYTE 20 DUP(0) ; 20 bytes, all equal to zero

var2 BYTE 20 DUP(?) ; 20 bytes, all uninitialized

var3 BYTE 4 DUP("STACK") ; 20 bytes: "STACKSTACKSTACKSTACK"

var4 BYTE 10,3 DUP(0),20 ; 5 bytes: 10, 0, 0, 0, 20

var5 BYTE 2 DUP(5 DUP('*'), 5 DUP('!')) ; '*****!!!!!*****!!!!!'

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 32

Defining 16-bit and 32-bit Data
Define storage for 16-bit and 32-bit integers

Signed and Unsigned

Single or multiple initial values

word1 WORD 65535 ; largest unsigned 16-bit value
word2 SWORD –32768 ; smallest signed 16-bit value
word3 WORD "AB" ; two characters fit in a WORD
array1 WORD 1,2,3,4,5 ; array of 5 unsigned words
array2 SWORD 5 DUP(?) ; array of 5 signed words
dword1 DWORD 0ffffffffh ; largest unsigned 32-bit value
dword2 SDWORD –2147483648 ; smallest signed 32-bit value
array3 DWORD 20 DUP(?) ; 20 unsigned double words
array4 SDWORD –3,–2,–1,0,1 ; 5 signed double words

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 33

QWORD, TBYTE, and REAL Data

quad1 QWORD 1234567812345678h
val1 TBYTE 1000000000123456789Ah
rVal1 REAL4 -2.1
rVal2 REAL8 3.2E-260
rVal3 REAL10 4.6E+4096
array REAL4 20 DUP(0.0)

QWORD and TBYTE
Define storage for 64-bit and 80-bit integers

Signed and Unsigned

REAL4, REAL8, and REAL10
Defining storage for 32-bit, 64-bit, and 80-bit floating-point data

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 34

Assembler builds a symbol table
So we can refer to the allocated storage space by name

Assembler keeps track of each name and its offset

Offset of a variable is relative to the address of the first variable

Example Symbol Table

.DATA Name Offset
value WORD 0 value 0

sum DWORD 0 sum 2

marks WORD 10 DUP (?) marks 6

msg BYTE 'The grade is:',0 msg 26

char1 BYTE ? char1 40

Symbol Table

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 35

Processors can order bytes within a word in two ways
Little Endian Byte Ordering

Memory address = Address of least significant byte
Examples: Intel 80x86

Big Endian Byte Ordering
Memory address = Address of most significant byte
Examples: MIPS, Motorola 68k, SPARC

Byte Ordering and Endianness

Byte 0Byte 1Byte 2Byte 3
32-bit Register

MSB LSB
.Byte 0Byte 1Byte 2Byte 3

a a+3a+2a+1

Memory

address

Byte 3Byte 0Byte 1Byte 2Byte 3
32-bit Register

MSB LSB
.Byte 0 Byte 1 Byte 2

a a+3a+2a+1

Memory

address

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 36

Adding Variables to AddSub
TITLE Add and Subtract, Version 2 (AddSub2.asm)
.686
.MODEL FLAT, STDCALL
.STACK
INCLUDE Irvine32.inc
.DATA
val1 DWORD 10000h
val2 DWORD 40000h
val3 DWORD 20000h
result DWORD ?
.CODE
main PROC

mov eax,val1 ; start with 10000h
add eax,val2 ; add 40000h
sub eax,val3 ; subtract 20000h
mov result,eax ; store the result (30000h)
call DumpRegs ; display the registers
exit

main ENDP
END main

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 37

Next . . .

Basic Elements of Assembly Language

Flat Memory Program Template

Example: Adding and Subtracting Integers

Assembling, Linking, and Debugging Programs

Defining Data

Defining Symbolic Constants

Data-Related Operators and Directives

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 38

Defining Symbolic Constants
Symbolic Constant

Just a name used in the assembly language program

Processed by the assembler ⇒ pure text substitution

Assembler does NOT allocate memory for symbolic constants

Assembler provides three directives:
= directive

EQU directive

TEXTEQU directive

Defining constants has two advantages:
Improves program readability

Helps in software maintenance: changes are done in one place

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 39

Equal-Sign Directive
Name = Expression

Name is called a symbolic constant

Expression is an integer constant expression

Good programming style to use symbols

Name can be redefined in the program

COUNT = 500 ; NOT a variable (NO memory allocation)
. . .
mov eax, COUNT ; mov eax, 500
. . .
COUNT = 600 ; Processed by the assembler
. . .
mov ebx, COUNT ; mov ebx, 600

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 40

Three Formats:

Name EQU Expression Integer constant expression

Name EQU Symbol Existing symbol name

Name EQU <text> Any text may appear within < …>

No Redefinition: Name cannot be redefined with EQU

EQU Directive

SIZE EQU 10*10 ; Integer constant expression

PI EQU <3.1416> ; Real symbolic constant

PressKey EQU <"Press any key to continue...",0>

.DATA

prompt BYTE PressKey

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 41

TEXTEQU Directive
TEXTEQU creates a text macro. Three Formats:

Name TEXTEQU <text> assign any text to name

Name TEXTEQU textmacro assign existing text macro

Name TEXTEQU %constExpr constant integer expression

Name can be redefined at any time (unlike EQU)

ROWSIZE = 5
COUNT TEXTEQU %(ROWSIZE * 2) ; evaluates to 10
MOVAL TEXTEQU <mov al,COUNT>
ContMsg TEXTEQU <"Do you wish to continue (Y/N)?">
.DATA
prompt BYTE ContMsg
.CODE
MOVAL ; generates: mov al,10

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 42

Next . . .

Basic Elements of Assembly Language

Flat Memory Program Template

Example: Adding and Subtracting Integers

Assembling, Linking, and Debugging Programs

Defining Data

Defining Symbolic Constants

Data-Related Operators and Directives

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 43

OFFSET Operator

.DATA
bVal BYTE ? ; Assume bVal is at 00404000h
wVal WORD ?
dVal DWORD ?
dVal2 DWORD ?

.CODE
mov esi, OFFSET bVal ; ESI = 00404000h
mov esi, OFFSET wVal ; ESI = 00404001h
mov esi, OFFSET dVal ; ESI = 00404003h
mov esi, OFFSET dVal2 ; ESI = 00404007h

OFFSET = address of a variable within its segment
In FLAT memory, one address space is used for code and data

OFFSET = linear address of a variable (32-bit number)

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 44

ALIGN Directive
ALIGN directive aligns a variable in memory

Syntax: ALIGN bound
Where bound can be 1, 2, 4, or 16

Address of a variable should be a multiple of bound

Assembler inserts empty bytes to enforce alignment

.DATA ; Assume that
b1 BYTE ? ; Address of b1 = 00404000h
ALIGN 2 ; Skip one byte
w1 WORD ? ; Address of w1 = 00404002h
w2 WORD ? ; Address of w2 = 00404004h
ALIGN 4 ; Skip two bytes
d1 DWORD ? ; Address of d1 = 00404008h
d2 DWORD ? ; Address of d2 = 0040400Ch

w1b1404000
w2404004

d1404008
d240400C

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 45

TYPE Operator
TYPE operator

Size, in bytes, of a single element of a data declaration

.DATA
var1 BYTE ?
var2 WORD ?
var3 DWORD ?
var4 QWORD ?

.CODE
mov eax, TYPE var1 ; eax = 1
mov eax, TYPE var2 ; eax = 2
mov eax, TYPE var3 ; eax = 4
mov eax, TYPE var4 ; eax = 8

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 46

LENGTHOF operator
Counts the number of elements in a single data declaration

LENGTHOF Operator

.DATA
array1 WORD 30 DUP(?),0,0
array2 WORD 5 DUP(3 DUP(?))
array3 DWORD 1,2,3,4
digitStr BYTE "12345678",0

.code
mov ecx, LENGTHOF array1 ; ecx = 32
mov ecx, LENGTHOF array2 ; ecx = 15
mov ecx, LENGTHOF array3 ; ecx = 4
mov ecx, LENGTHOF digitStr ; ecx = 9

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 47

SIZEOF Operator

.DATA
array1 WORD 30 DUP(?),0,0
array2 WORD 5 DUP(3 DUP(?))
array3 DWORD 1,2,3,4
digitStr BYTE "12345678",0

.CODE
mov ecx, SIZEOF array1 ; ecx = 64
mov ecx, SIZEOF array2 ; ecx = 30
mov ecx, SIZEOF array3 ; ecx = 16
mov ecx, SIZEOF digitStr ; ecx = 9

SIZEOF operator
Counts the number of bytes in a data declaration

Equivalent to multiplying LENGTHOF by TYPE

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 48

Multiple Line Declarations

.DATA
array WORD 10,20,

30,40,
50,60

.CODE
mov eax, LENGTHOF array ; 6
mov ebx, SIZEOF array ; 12

A data declaration spans multiple
lines if each line (except the last)

ends with a comma

The LENGTHOF and SIZEOF
operators include all lines

belonging to the declaration

.DATA
array WORD 10,20

WORD 30,40
WORD 50,60

.CODE
mov eax, LENGTHOF array ; 2
mov ebx, SIZEOF array ; 4

In the following example, array
identifies the first line WORD

declaration only

Compare the values returned by
LENGTHOF and SIZEOF here to

those on the left

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 49

PTR Provides the flexibility to access part of a variable

Can also be used to combine elements of a smaller type

Syntax: Type PTR (Overrides default type of a variable)

PTR Operator

.DATA
dval DWORD 12345678h
array BYTE 00h,10h,20h,30h

.CODE
mov al, dval
mov al, BYTE PTR dval
mov ax, dval
mov ax, WORD PTR dval
mov eax, array
mov eax, DWORD PTR array

78 56 34 12

dval

00 10 20 30

array

; error – why?
; al = 78h
; error – why?
; ax = 5678h
; error – why?
; eax = 30201000h

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 50

LABEL Directive
Assigns an alternate name and type to a memory location

LABEL does not allocate any storage of its own

Removes the need for the PTR operator

Format: Name LABEL Type

.DATA
dval LABEL DWORD
wval LABEL WORD
blist BYTE 00h,10h,00h,20h
.CODE
mov eax, dval
mov cx, wval
mov dl, blist

wval

00 10 00 20

blist

dval
; eax = 20001000h
; cx = 1000h
; dl = 00h

Introduction to Assembly Language COE 205 – Computer Organization and Assembly Language – KFUPM slide 51

Summary
Instruction ⇒ executed at runtime
Directive ⇒ interpreted by the assembler
.STACK, .DATA, and .CODE

Define the code, data, and stack sections of a program

Edit-Assemble-Link-Debug Cycle
Data Definition

BYTE, WORD, DWORD, QWORD, etc.
DUP operator

Symbolic Constant
=, EQU, and TEXTEQU directives

Data-Related Operators
OFFSET, ALIGN, TYPE, LENGTHOF, SIZEOF, PTR, and LABEL

