
IA 32 A hit tIA-32 Architecture

COE 205
Computer Organization and Assembly Language

Dr. Aiman El-Maleh

College of Computer Sciences and Engineering
King Fahd University of Petroleum and Mineralsg y

[Adapted from slides of Dr. Kip Irvine: Assembly Language for Intel-Based Computers]

Outline
Intel Microprocessors

IA-32 Registers

Instruction Execution Cycley

IA-32 Memory Management

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 2

Intel Microprocessorsp
Intel introduced the 8086 microprocessor in 1979

8086, 8087, 8088, and 80186 processors
16-bit processors with 16-bit registers

16-bit data bus and 20-bit address bus
Physical address space = 220 bytes = 1 MB

8087 Floating-Point co-processor

Uses segmentation and real-address mode to address memoryUses seg e tat o a d ea add ess ode to add ess e o y
Each segment can address 216 bytes = 64 KB

8088 is a less expensive version of 80868088 is a less expensive version of 8086
Uses an 8-bit data bus

80186 is a faster version of 8086

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 3

80186 is a faster version of 8086

Intel 80286 and 80386 Processors
80286 was introduced in 1982

24-bit address bus ⇒ 224 bytes = 16 MB address space

Introduced protected mode
Segmentation in protected mode is different from the real mode

80386 was introduced in 1985
First 32-bit processor with 32-bit general-purpose registers

First processor to define the IA-32 architecturest p ocesso to de e t e 3 a c tectu e

32-bit data bus and 32-bit address bus

232 bytes ⇒ 4 GB address space2 bytes ⇒ 4 GB address space

Introduced paging, virtual memory, and the flat memory model
Segmentation can be turned off

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 4

Segmentation can be turned off

Intel 80486 and Pentium Processorsm
80486 was introduced 1989

Improved version of Intel 80386

On-chip Floating-Point unit (DX versions)

On-chip unified Instruction/Data Cache (8 KB)

Uses Pipelining: can execute up to 1 instruction per clock cycle

Pentium (80586) was introduced in 1993
Wider 64-bit data bus but address bus is still 32 bitsWider 64 bit data bus, but address bus is still 32 bits

Two execution pipelines: U-pipe and V-pipe
Superscalar performance: can execute 2 instructions per clock cycleSuperscalar performance: can execute 2 instructions per clock cycle

Separate 8 KB instruction and 8 KB data caches

MMX instructions (later models) for multimedia applications
IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 5

MMX instructions (later models) for multimedia applications

Intel P6 Processor Familym y
P6 Processor Family: Pentium Pro, Pentium II and III

Pentium Pro was introduced in 1995
Three-way superscalar: can execute 3 instructions per clock cycle

36-bit address bus ⇒ up to 64 GB of physical address space

Introduced dynamic execution
Out-of-order and speculative execution

Integrates a 256 KB second level L2 cache on-chip

Pentium II was introduced in 1997
Added MMX instructions (already introduced on Pentium MMX)

Pentium III was introduced in 1999
Added SSE instructions and eight new 128-bit XMM registers

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 6

g g

Pentium 4 and Xeon Familym m y
Pentium 4 is a seventh-generation x86 architecture

I t d d i 2000Introduced in 2000

New micro-architecture design called Intel Netburst

Very deep instruction pipeline, scaling to very high frequencies

Introduced the SSE2 instruction set (extension to SSE)
Tuned for multimedia and operating on the 128-bit XMM registers

In 2002, Intel introduced Hyper-Threading technology
Allowed 2 programs to run simultaneously, sharing resources

Xeon is Intel's name for its server-class microprocessorsXeon is Intel s name for its server class microprocessors
Xeon chips generally have more cache

Support larger multiprocessor configurations
IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 7

Support larger multiprocessor configurations

Pentium-M and EM64Tm
Pentium M (Mobile) was introduced in 2003

Designed for low-power laptop computers
Modified version of Pentium III, optimized for power efficiency
L d l l h (2 MB l t d l)Large second-level cache (2 MB on later models)
Runs at lower clock than Pentium 4, but with better performance

E t d d M 64 bit T h l (EM64T)Extended Memory 64-bit Technology (EM64T)
Introduced in 2004
64 bit t f th IA 32 hit t64-bit superset of the IA-32 processor architecture
64-bit general-purpose registers and integer support
N b f l i t i d f 8 t 16Number of general-purpose registers increased from 8 to 16
64-bit pointers and flat virtual address space
Large physical address space: up to 240 = 1 Terabytes

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 8

Large physical address space: up to 240 = 1 Terabytes

Intel MicroArchitecture Historyy

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 9

Intel Core MicroArchitecture
64-bit cores

Wide dynamic execution (execute four instructions
simultaneously)

Intelligent power capability (power gating)

Advanced smart cache (shares L2 cache between cores)()

Smart memory access (memory disambiguation)

Advanced digital media boostAdvanced digital media boost

See the demo at
http://www intel com/technology/architecture/coremicro/dhttp://www.intel.com/technology/architecture/coremicro/d
emo/demo.htm?iid=tech_core+demo

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 10

CISC and RISC
CISC – Complex Instruction Set Computer

Large and comple instr ction setLarge and complex instruction set

Variable width instructions

Requires microcode interpreterRequires microcode interpreter
Each instruction is decoded into a sequence of micro-operations

Example: Intel x86 familyExample: Intel x86 family

RISC – Reduced Instruction Set Computer
S ll d i l i t ti tSmall and simple instruction set

All instructions have the same width

Si l i t ti f t d dd i dSimpler instruction formats and addressing modes

Decoded and executed directly by hardware

E l ARM MIPS P PC SPARC t
IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 11

Examples: ARM, MIPS, PowerPC, SPARC, etc.

Next ...
Intel Microprocessors

IA-32 Registers

Instruction Execution Cycley

IA-32 Memory Management

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 12

Basic Program Execution Registersg m g
Registers are high speed memory inside the CPU

Eight 32-bit general-purpose registers

Six 16-bit segment registers

32-bit General-Purpose Registers

Processor Status Flags (EFLAGS) and Instruction Pointer (EIP)

EAX

EBX

ECX

EBP

ESP

ESI

16-bit Segment Registers

EDX EDI

CS

SS

DS

ES

EIP

EFLAGS

FS

GS

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 13

DS GS

General-Purpose Registersp g
Used primarily for arithmetic and data movement

10 t t 10 i t i tmov eax, 10 move constant 10 into register eax

Specialized uses of Registers
EAX – Accumulator register

Automatically used by multiplication and division instructions

ECX Counter registerECX – Counter register
Automatically used by LOOP instructions

ESP – Stack Pointer registerg
Used by PUSH and POP instructions, points to top of stack

ESI and EDI – Source Index and Destination Index register
Used by string instructions

EBP – Base Pointer register
U d t f t d l l i bl th t k

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 14

Used to reference parameters and local variables on the stack

Accessing Parts of Registersg f g
EAX, EBX, ECX, and EDX are 32-bit Extended registers

Programmers can access their 16 bit and 8 bit partsProgrammers can access their 16-bit and 8-bit parts

Lower 16-bit of EAX is named AX

AX is further divided into 88AX is further divided into
AL = lower 8 bits

AH = upper 8 bits

AH AL

16 bitsAX

8 bits + 8 bits

AH upper 8 bits

ESI, EDI, EBP, ESP have only
16-bit names for lower half

16 bitsAX

EAX 32 bits

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 15

Accessing Parts of Registersg f g

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 16

Special-Purpose & Segment Registersp p gm g
EIP = Extended Instruction Pointer

C t i dd f t i t ti t b t dContains address of next instruction to be executed

EFLAGS = Extended Flags Register
Contains status and control flags
Each flag is a single binary bit

Six 16-bit Segment Registers
Support segmented memory
Six segments accessible at a time
Segments contain distinct contents

Code
Data
Stack

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 17

Stack

EFLAGS Registerg

Status Flags
Status of arithmetic and logical operations

Control and System flags
Control the CPU operation

P t d l i di id l bit i th EFLAGS i t
IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 18

Programs can set and clear individual bits in the EFLAGS register

Status Flagsg
Carry Flag

S t h i d ith ti lt i t fSet when unsigned arithmetic result is out of range
Overflow Flag

Set when signed arithmetic result is out of rangeSet when signed arithmetic result is out of range
Sign Flag

Copy of sign bit, set when result is negativeCopy of sign bit, set when result is negative
Zero Flag

Set when result is zero
Auxiliary Carry Flag

Set when there is a carry from bit 3 to bit 4
Parity Flag

Set when parity is even
L t i ifi t b t i lt t i b f 1

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 19

Least-significant byte in result contains even number of 1s

Floating-Point, MMX, XMM Registersg , , g
Floating-point unit performs high speed FP operations

Eight 80-bit floating-point data registers
ST(0), ST(1), . . . , ST(7) ST(0)(), (), , ()

Arranged as a stack

Used for floating point arithmetic

()

ST(1)

ST(2)
Used for floating-point arithmetic

Eight 64-bit MMX registers
ST(3)

ST(4)

Used with MMX instructions

Eight 128-bit XMM registers

ST(5)

ST(6)Eight 128 bit XMM registers
Used with SSE instructions

ST(7)

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 20

Registers in Intel Core Microarchitectureg

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 21

Next ...
Intel Microprocessors

IA-32 Registers

Instruction Execution Cycley

IA-32 Memory Management

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 22

Fetch-Execute Cycley
Each machine language instruction is first fetched from
the memory and stored in an Instruction Register (IR)the memory and stored in an Instruction Register (IR).
The address of the instruction to be fetched is stored in a
register called Program Counter or simply PC In someregister called Program Counter or simply PC. In some
computers this register is called the Instruction Pointer
or IPor IP.

After the instruction is fetched, the PC (or IP) is
incremented to point to the address of the next Flash Movieincremented to point to the address of the next
instruction.

The fetched instruction is decoded (to determine whatThe fetched instruction is decoded (to determine what
needs to be done) and executed by the CPU.

Flash Movie

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 23

Instruction Execute Cycley

Obtain instruction from program storageInstruction
Fetch

Determine required actions and instruction sizeInstruction
Decode

C
yc

le

Locate and obtain operand dataOperand
Fetch

In
fin

ite
 C

Compute result value and status

D it lt i t f l t

Execute

Writeback

I

Deposit results in storage for later useWriteback
Result

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 24

Instruction Execution Cycle – cont'dy

Instruction Fetch I2 I3 I4
PC program

. . .I1Instruction Fetch
Instruction Decode
Operand Fetch

I2 I3 I4

op1
op2

memory fetch

registers

read

registers

I1

Operand Fetch
Execute
R lt W it b k

I1
instruction
register

e

deco

eResult Writeback
ALU

w
rit

e

ode

execute

w
rit

e

(output)

flags

(output)

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 25

Pipelined Executionp
Instruction execution can be divided into stages

Pi li i k it ibl t t t i t ti b fPipelining makes it possible to start an instruction before
completing the execution of previous one

S1 S2 S3 S4 S5

1

Stages

S6

I 1

For k stages and n instructions, the
number of required cycles is: k + n – 1

S1 S2 S3 S4 S5

Stages

S6

1

2

3

4

I-1

I-1

I-1

I-1

1

cl
es

2

3

4

I-1

I-2 I-1

I-2 I-1

I 2 I 1

C
yc

le
s 5

6

7

8

I-2

I-2

I-1
I-1

C
yc 4

5

6

7

I-2 I-1

I-2 I-1

I-2 I-1

I-2

9

10

11

12

I-2

I-2

I-2

I-2

Pipelined
Execution

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 26

7 I 212 I 2

Wasted Cycles (pipelined)y (p p)
When one of the stages requires two or more clock
cycles to complete, clock cycles are again wasted

Assume that stage S4 is the
execute stage

Ass me also that S4 req ires
S1 S2 S3 S4 S5

1

Stages

S6
I 1

exe

Assume also that S4 requires
2 clock cycles to complete

As more instructions enter the

1

es

2
3
4

I-1
I-2
I-3

I-1
I-2
I-3

I-1
I-2 I-1As more instructions enter the

pipeline, wasted cycles occur

For k stages, where one
C

yc
l

5
6
7

I-3
I-2 I-1

I-1
8 I-3 I-2

I-1

I-2

stage requires 2 cycles, n
instructions require k + 2n – 1
cycles

8
9

I-3 I-2
I-2

10
11

I-3
I-3

I-3

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 27

cyc es

Superscalar Architecturep
A superscalar processor has multiple execution pipelines

The Pentium processor has two execution pipelines
Called U and V pipes

In the following, stage
S4 has 2 pipelines

Stages

S4p p
Each pipeline still
requires 2 cycles

S1 S2 S3 u S5

1

S6

2

3

I-1

I-2

I 3

I-1

I 2 I 1

v

Second pipeline
eliminates wasted cycles

C
yc

le
s

3

4

5

6

I-3

I-4

I-2

I-3

I-4

I-1

I-2

I-3

I-4

I-1

I-3 I-1

I-2

I-2

I-1

For k stages and n
instructions, number of
cycles = k + n

7 I-2 I-1I-4

8

9

I-3

I-4

I-2

I-3

10 I-4

I-4

I-3

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 28

y 10 I 4

Next ...
Intel Microprocessors

IA-32 Registers

Instruction Execution Cycley

IA-32 Memory Management

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 29

Modes of Operationf p
Real-Address mode (original mode provided by 8086)

O f f ()Only 1 MB of memory can be addressed, from 0 to FFFFF (hex)
Programs can access any part of main memory
MS DOS i l dd dMS-DOS runs in real-address mode

Protected mode
Each program can address a maximum of 4 GB of memory
The operating system assigns memory to each running program
Programs are prevented from accessing each other’s memory
Native mode used by Windows NT, 2000, XP, and Linux

Virtual 8086 mode
Processor runs in protected mode, and creates a virtual 8086

hi ith 1 MB f dd f h i
IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 30

machine with 1 MB of address space for each running program

Memory Segmentation m y gm
Memory segmentation is necessary since the 20-bits memory
addresses cannot fit in the 16-bits CPU registersg
Since x86 registers are 16-bits wide, a memory segment is made of
216 consecutive words (i.e. 64K words)
E h t h b id tifi th t i l 16 bit bEach segment has a number identifier that is also a 16-bit number
(i.e. we have segments numbered from 0 to 64K)
A memory location within a memory segment is referenced by y y g y
specifying its offset from the start of the segment. Hence the first
word in a segment has an offset of 0 while the last one has an offset
of FFFFh
To reference a memory location its logical address has to be
specified. The logical address is written as:

S t b ff tSegment number:offset

For example, A43F:3487h means offset 3487h within segment
A43Fh.

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 31

Program Segmentsg m gm
Machine language programs usually have 3 different parts stored in
different memory segments:different memory segments:

Instructions: This is the code part and is stored in the code segment

Data: This is the data part which is manipulated by the code and is
stored in the data segment

Stack: The stack is a special memory buffer organized as Last-In-First-
Out (LIFO) structure used by the CPU to implement procedure callsOut (LIFO) structure used by the CPU to implement procedure calls
and as a temporary holding area for addresses and data. This data
structure is stored in the stack segment

The segment numbers for the code segment the data segment andThe segment numbers for the code segment, the data segment, and
the stack segment are stored in the segment registers CS, DS, and
SS, respectively.

Program segments do not need to occupy the whole 64K locations
in a segment

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 32

Real Address Mode
A program can access up to six segments
at any timeat any time

Code segment

St k tStack segment

Data segment

(3)Extra segments (up to 3)

Each segment is 64 KB

Logical address
Segment = 16 bitsg

Offset = 16 bits

Linear (physical) address = 20 bits
IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 33

Linear (physical) address = 20 bits

Logical to Linear Address Translationg
Linear address = Segment × 10 (hex) + Offset

Example:

segment = A1F0 (hex)segment A1F0 (hex)

offset = 04C0 (hex)

l i l dd A1F0 04C0 (h)logical address = A1F0:04C0 (hex)

what is the linear address?

Solution:
A1F00 (add 0 to segment in hex)

+ 04C0 (offset in hex)

A23C0 (20-bit linear address in hex)

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 34

A23C0 (20 bit linear address in hex)

Segment Overlapgm p
There is a lot of overlapping
between segments in the mainbetween segments in the main
memory.

A new segment starts everyA new segment starts every
10h locations (i.e. every 16
locations)locations).

Starting address of a segment
always has a 0h LSDalways has a 0h LSD.

Due to segments overlapping
logical addresses are notlogical addresses are not
unique .

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 35

Your turn . . .
What linear address corresponds to logical address

028F:0030?

Solution: 028F0 + 0030 = 02920 (hex)Solution: 028F0 + 0030 = 02920 (hex)

Always use hexadecimal notation for addressesy

What logical address corresponds to the linear address
28F30h?28F30h?

Many different segment:offset (logical) addresses canMany different segment:offset (logical) addresses can
produce the same linear address 28F30h. Examples:

28F3:0000 28F2:0010 28F0:0030 28B0:0430

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 36

28F3:0000, 28F2:0010, 28F0:0030, 28B0:0430, . . .

Flat Memory Modelm y
Modern operating systems turn segmentation off

Each program uses one 32-bit linear address space
Up to 232 = 4 GB of memory can be addressed

Segment registers are defined by the operating system

All segments are mapped to the same linear address spaceg pp p

In assembly language, we use .MODEL flat directive
T i di t th Fl t d lTo indicate the Flat memory model

A linear address is also called a virtual address
Operating system maps virtual address onto physical addresses

Using a technique called paging

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 37

Programmer View of Flat Memory
Linear address space of
a program (up to 4 GB)

g mm f m y
Same base address for all segments

All segments are mapped to the same
32-bit address

DATA
ESI

a program (up to 4 GB)All segments are mapped to the same
linear address space

EIP Register
32-bit address

DATA

CODEEIP

EDIEIP Register
Points at next instruction

ESI and EDI Registers
32-bit address

STACKEBP

ESI and EDI Registers
Contain data addresses
Used also to index arrays

Unused

ESP

CS
DS

Used also to index arrays

ESP and EBP Registers
SS
ES

base address = 0
f ll t

ESP points at top of stack
EBP is used to address parameters and
variables on the stack

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 38

for all segmentsvariables on the stack

Protected Mode Architecture
Logical address consists of

16-bit segment selector (CS, SS, DS, ES, FS, GS)

32-bit offset (EIP, ESP, EBP, ESI ,EDI, EAX, EBX, ECX, EDX)

Segment unit translates logical address to linear address
Using a segment descriptor table

Linear address is 32 bits (called also a virtual address)

Paging unit translates linear address to physical address
Using a page directory and a page table

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 39

Logical to Linear Address Translationg

Upper 13 bits of pp
segment selector
are used to index

the descriptor table

GDTR, LDTR

TI = Table IndicatorTI = Table Indicator
Select the descriptor table
0 = Global Descriptor Table
1 = Local Descriptor Table

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 40

1 Local Descriptor Table

Segment Descriptor Tablesgm p
Global descriptor table (GDT)

Only one GDT table is provided by the operating system

GDT table contains segment descriptors for all programs

Also used by the operating system itself

Table is initialized during boot up

GDT table address is stored in the GDTR register

Modern operating systems (Windows-XP) use one GDT table

Local descriptor table (LDT)
Another choice is to have a unique LDT table for each programq p g

LDT table contains segment descriptors for only one program

LDT table address is stored in the LDTR register

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 41

LDT table address is stored in the LDTR register

Segment Descriptor Detailsgm p
Base Address

32-bit number that defines the starting location of the segment

32-bit Base Address + 32-bit Offset = 32-bit Linear Address

Segment Limit
20-bit number that specifies the size of the segment

The size is specified either in bytes or multiple of 4 KB pages

Using 4 KB pages, segment size can range from 4 KB to 4 GB

Access Rights
Whether the segment contains code or data

Whether the data can be read-only or read & written

Privilege level of the segment to protect its access

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 42

Segment Visible and Invisible Partsgm
Visible part = 16-bit Segment Register

CS, SS, DS, ES, FS, and GS are visible to the programmer

Invisible Part = Segment Descriptor (64 bits)
Automatically loaded from the descriptor table

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 43

Pagingg g
Paging divides the linear address space into …

Fixed-sized blocks called pages, Intel IA-32 uses 4 KB pages

Operating system allocates main memory for pages
Pages can be spread all over main memory

Pages in main memory can belong to different programs

If main memory is full then pages are stored on the hard disk

OS has a Virtual Memory Manager (VMM)
Uses page tables to map the pages of each running program

Manages the loading and unloading of pages

As a program is running, CPU does address translation

Page fault: issued by CPU when page is not in memory
IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 44

Page fault: issued by CPU when page is not in memory

Paging – cont’dg g
Main Memory

The operating

P 2

. . .

Page n

P 2

. . .

Page m

al
 a

dd
re

ss

Pr
og

ra
m

 1 . . .
p g

system uses
page tables to
map the pages al

 a
dd

re
ss

Pr

og
ra

m
 2

Page 0

Page 1

Page 2

Page 0

Page 1

Page 2
lin

ea
r v

irt
ua

sp
ac

e
of

 Pin the linear
virtual address

space onto lin
ea

r v
irt

ua
sp

ac
e

of
 P

l

Hard Disk
Pages that cannot Each running

main memory

The operating
system swaps

l

g
fit in main memory
are stored on the

hard disk

g
program has
its own page

table

system swaps
pages between
memory and the

hard disk

As a program is running, the processor translates the linear virtual addresses
onto real memory (called also physical) addresses

hard disk

IA-32 Architecture COE 205 – Computer Organization and Assembly Language – KFUPM slide 45

onto real memory (called also physical) addresses

