
COE 205 Lab Manual Lab 3: Defining Data and Symbolic Constants - page 25

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

Lab 3: Defining Data and Symbolic Constants

Contents
3.1. MASM Data Types
3.2. Defining Integer Data
3.3. Watching Variables using the Windows Debugger
3.4. Multiple Initializers, Defining Strings, and the DUP operator
3.5. Watching Memory using the Windows Debugger
3.6. Data-Related Operators
3.7. Symbolic Constants and the EQU and = directives
3.8. Viewing Symbolic Constants in the Listing (.lst) File

3.1 MASM Data Types
MASM defines various intrinsic data types, each of which describes a set of values that can
be assigned to variables and expressions of the given type. The following table lists these data
types. The first 9 data types are used to define integer data, while the last 3 are used to define
real data according to the IEEE standard real number formats.

Type Usage
BYTE 8-bit unsigned integer (range 0 to 255)

SBYTE 8-bit signed integer (range –128 to +127)

WORD 16-bit unsigned integer (range 0 to 65535 = 216 – 1)

SWORD 16-bit signed integer (range –32768 to +32767 = 215 – 1)

DWORD 32-bit unsigned integer (Double Word: range 0 to 4,294,967,295 = 232 – 1)

SDWORD 32-bit signed integer (range –2,147,483,648 to +2,147,483,647 = 231 – 1)

FWORD 48-bit integer (FAR pointer in protected mode)

QWORD 64-bit integer (Quad Word)

TBYTE 80-bit (Ten Byte) integer

REAL4 32-bit (4-byte) IEEE floating-point number

REAL8 64-bit (8-byte) IEEE double-precision floating-point number

REAL10 80-bit (10-byte) IEEE extended-precision floating-point number

Data definition has the following syntax:
[name] directive initializer [,initializer] . . .

For more information, refer to your textbook or class notes.

COE 205 Lab Manual Lab 3: Defining Data and Symbolic Constants - page 26

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

3.2 Lab Work: Defining Integer Data
The following program demonstrates integer data definition under the .DATA section. You
may open and view this program in ConTEXT or any other text editor. Assemble and link
this program to produce the IntegerDef.exe executable file.
TITLE Integer Data Definitions (File:IntegerDef.asm)

; Examples Demonstrating Integer Data Definition

.686
.MODEL flat, stdcall
.STACK

INCLUDE Irvine32.inc

.data
; ----------------- Byte Values ---------------------
byte1 BYTE 'A' ; 'A' = 65 = 41h
byte2 BYTE 0 ; smallest unsigned byte value
byte3 BYTE 255 ; largest unsigned byte value
byte4 SBYTE -128 ; smallest signed byte value
byte5 SBYTE +127 ; largest signed byte value ;
byte6 BYTE ? ; uninitialized

; ----------------- Word Values ---------------------
word1 WORD 65535 ; largest unsigned word value
word2 SWORD -32768 ; smallest signed word value
word3 WORD ? ; uninitialized

; --------------- DoubleWord Values -----------------
dword1 DWORD 0FFFFFFFFh ; largest unsigned value in hex
dword2 SDWORD -2147483648 ; smallest signed value in decimal

; --------------- QuadWord Value --------------------
quad1 QWORD 0123456789ABCDEFh

.code
main PROC

; No instructions to execute
 exit
main ENDP
END main

3.3 Lab Work: Watching Variables using the Windows Debugger
Now run the Windows debugger to watch the variables and the memory content. You may
run the debugger from ConTEXT Tools menu (if it is properly configured) or from the
command prompt by typing: windbg –QY –G IntegerDef.exe

3.3.1 Lab Work: Watch Window
Open the Watch window (from the View menu). Insert the variable byte1 and byte4 under
the Name column as shown below. To add a variable to the Watch list, click in the first empty
cell in the Name column, enter the name of this variable, and press ENTER. You can watch
variables in any order. It does not have to be the same order declared in the source program.

COE 205 Lab Manual Lab 3: Defining Data and Symbolic Constants - page 27

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

Observe the Value of these variables under the Value column. You can also view the type
and memory addresses of these variables by pressing on the Typecast and Locations
buttons. Observe that all the memory location addresses are in hexadecimal. The value of
variables can be in hexadecimal or decimal depending on whether the type is unsigned or not.
The windows debugger uses different type names other than the ones used in MASM. The
type BYTE becomes unsigned char and SBYTE becomes char. The type WORD becomes
unsigned short and SWORD becomes short. The type DWORD becomes unsigned long,
SDWORD becomes long, and the type QWORD becomes int64.

Now, let us change the Type of byte1 from unsigned char to char. This can be done easily by
clicking on the type and editing its value. Observe that the value of byte1 now appears in
decimal (65) after it appeared in hexadecimal (0x41). Similarly, let us change the type of
byte4 from char to unsigned char as shown below. Observe that changing the type of a
variable to unsigned (or vice versa) does NOT change the value of the variable. The
value is still the same and is stored in binary in the memory of the computer. It is only how
we view the same value as being either in signed decimal or hexadecimal.

To delete a Name from the watch list, select that name and press the delete button to delete
the name. The line will disappear from the watch list as soon as click outside.

Now insert all the variable names in the watch list and observe their values and locations. Fill
in the following table showing the Location (address) of these variables in the data
segment in memory, as well as their values in hex and in decimal. Observe that the
variables occupy locations at successive addresses in memory, according to their order of
appearance in the program.

Name Location (hex) Value (hex) Value (decimal)
byte1 00404000 'A' = 41h 65

byte2

byte3

byte4

byte5

byte6

word1

COE 205 Lab Manual Lab 3: Defining Data and Symbolic Constants - page 28

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

word2

word3

dword1

dword2

quad1

What is the total number of bytes allocated for data? ...

3.4 Lab Work: Multiple Initializers, Defining Strings, and the DUP Operator
You can create arrays of bytes, words, double words, etc., either by explicitly using multiple
initializers or by using the DUP (Duplicate) operator. Multiple initializers are separated by
commas and are used to initialize each element of the array with an explicit number. The
DUP operator generates a repeated storage allocation, using a constant expression as a
counter. The initializers and the DUP operator can be combined together and can be nested.
You can also create string data definition by enclosing a sequence of characters in quotation
marks (either single quotes or double quotes can be used). Strings are commonly terminated
with a null character, a byte containing the value 0. We will follow the convention of
terminating all strings with a null char.

TITLE Multiple Initializers (MultipleInitializers.asm)

; Examples showing multiple initializers and the DUP operator

.686
.MODEL flat, stdcall
.STACK

INCLUDE Irvine32.inc

; ----------------- Byte Values ----------------
.data

list1 BYTE 10, 32, 41h, 00100010b
list2 BYTE 0Ah, 20h, 'A', 22h
array1 BYTE 8 DUP(0) ; 8 bytes initialized to 0

greeting BYTE "Good afternoon",0

; ----------------- Word Values ---------------------

myList WORD 1,2,3,4 ; array of words

; --------------- DoubleWord Values --------------

array2 DWORD 4 DUP(01234567h)

.code
main PROC

; No instructions to execute

 exit
main ENDP
END main

COE 205 Lab Manual Lab 3: Defining Data and Symbolic Constants - page 29

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

Now open MultipleInitializers.asm and assemble and link the file. You can use the make32
batch file from the command prompt or from the ConTEXT editor’s Tools menu.

3.5 Lab Work: Watching Memory using the Windows Debugger
Now run the Windows debugger to view the memory content. You may open the debugger
from the ConTEXT editor’s Tools menu (if it is properly configured) or from the command
prompt by typing: windbg –QY –G MultipleInitializers.exe

3.5.1 Lab Work: Memory Window
From the View menu, select Memory to open the Memory Window. This window will
allow you to watch the content of memory. Under Virtual enter list1, the name of the first
variable. The virtual address of list1 is 00404000 (in hexadecimal) as shown in the first
column of the Memory Window. We call this address a virtual address because it is not a real
address. The Windows Operating System maps virtual addresses onto real addresses, but we
are not concerned here about the details.

In the Memory window shown below, the Display format is shown as Byte, and the Byte
values in memory appear in hexadecimal. You may resize the Memory window so that
exactly 16 bytes are displayed on each line. The virtual address goes by increments of 10h =
16 bytes.

It is also possible to write the virtual address of the variable in the Virtual address box. For
example, we could have written 00404000 in the virtual address box, but it is easier to refer
to memory by name, rather than by address. The addresses are still listed in the first column
of the Memory Window in hexadecimal. Observe also that printable characters are displayed
on the right. For example, the byte at address 00404010 is 47h = G, and the byte at address
00404013 is 64h = d.

You can view memory starting at any address or at any variable. For example, if you want to
view myList then type the variable name in the Virtual address box.

Now answer the following:

What is the virtual address (in hexadecimal) of myList? ..

What is the virtual address (in hexadecimal) of array2? ..

How many bytes are allocated for myList? ...

How many bytes are allocated for array2? ...

What is the byte value (in hex) at virtual address 00404018? ..

What is the byte value (in hex) at virtual address 00404032? ..

COE 205 Lab Manual Lab 3: Defining Data and Symbolic Constants - page 30

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

3.5.2 Little Endian Order
The variable myList is an array of words and each word occupies 2 bytes of memory. The
first element of myList has the value 1 and occupies 2 bytes of memory. The least significant
byte has value 01h and the most significant byte has value 00h. The least significant byte is
stored at address 00404020h (low byte address) and the most significant byte is stored at
address 00404021h (high byte address) as shown in the above Memory window. Similarly,
observe the byte order of the elements of array2. Each element of array2 is a double word
and occupies 4 bytes of memory. Each element has a value 01234567h, where the least
significant byte 67h is stored at the first byte address, while the most significant byte 01h is
stored at the last byte address. This byte ordering, from least significant byte to most
significant byte, is called Little Endian order. This byte ordering is used by the Intel
processors to store values that occupy more than one byte.

3.5.3 Lab Work: Changing the Display Format
The Byte display format is not convenient to view arrays of words or double words. Let us
now change the Display format to Short Hex to have a WORD view of myList in
hexadecimal, as shown below. The Short Unsigned display format can be used to view an
unsigned WORD array in decimal, rather than in hex. The Short display format can be used
to view the elements of an SWORD (Signed WORD) array in decimal.

For array2, which is an array of double words, use the Long Hex display format to display
the values. Observe that each element of array2 occupies 4 bytes of memory. We can also
use the Long and Long Unsigned display formats to display the numbers as signed or
unsigned decimal, rather than hex.

Using the Long Hex format for array2, write the address and the four double word values of
array2, as they appear in the Memory window:

Other display formats are also available and can be explored. The Quad display formats can
be used to display QWORD (8-byte) numbers either signed or unsigned, in decimal or in hex.
The Real display formats can be used to display floating-point numbers of different sizes.

COE 205 Lab Manual Lab 3: Defining Data and Symbolic Constants - page 31

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

3.6 Lab Work: Data Related Operators
In the following program, you will learn about TYPE, LENGTHOF, SIZEOF, OFFSET,
and PTR operators. These operators are not instructions and are not executed by the
processor. Instead, they are only processed by the assembler during assembly time.

TYPE Size (in bytes) of each element in an array.
LENGTHOF Number of elements in an array.
SIZEOF Number of bytes used by an array initializer.
OFFSET Virtual address of a variable.
PTR Used to override a variable's default size.

For more details about these operators, refer to the lecture notes or your textbook. Open
Operators.asm using ConTEXT or any other text editor and assemble and link the file.

TITLE Operators (File: Operators.asm)
; Demonstration of TYPE, LENGTHOF, SIZEOF, OFFSET, and PTR operators

.686
.MODEL flat, stdcall
.STACK

INCLUDE Irvine32.inc

.data
byte1 BYTE 10,20,30,40
array1 WORD 30 DUP(?),0,0
array2 WORD 5 DUP(3 DUP(?))
array3 DWORD 01234567h,2,3,4
digitStr BYTE '12345678',0
myArray BYTE 10h,20h,30h,40h,50h,60h,70h,80h,90h

.code
main PROC
 ; Demonstrating TYPE operator
 mov al, TYPE byte1
 mov bl, TYPE array1
 mov cl, TYPE array3
 mov dl, TYPE digitStr

 ; Demonstrating LENGTHOF operator
 mov eax, LENGTHOF array1
 mov ebx, LENGTHOF array2
 mov ecx, LENGTHOF array3
 mov edx, LENGTHOF digitStr

; Demonstrating SIZEOF operator
 mov eax, SIZEOF array1
 mov ebx, SIZEOF array2
 mov ecx, SIZEOF array3
 mov edx, SIZEOF digitStr

 ; Demonstrating OFFSET operator
 mov eax, OFFSET byte1
 mov ebx, OFFSET array1
 mov ecx, OFFSET array2
 mov edx, OFFSET array3
 mov esi, OFFSET digitStr
 mov edi, OFFSET myArray

COE 205 Lab Manual Lab 3: Defining Data and Symbolic Constants - page 32

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

 ; Demonstrating PTR operator
 mov al, BYTE PTR array3
 mov bx, WORD PTR array3
 mov cx, WORD PTR myArray
 mov edx, DWORD PTR myArray

 exit
main ENDP
END main

3.6.1 Lab Work: Tracing Program Execution and Watching Registers
Run the Windows debugger from the ConTEXT editor, or from the command prompt by
typing: windbg –QY –G Operators.exe. From the View menu, select Registers to open
the Registers Window. Customize the registers to appear in the order that you want. Press
the Customize button and enter:

al bl cl dl ax bx cx dx eax ebx ecx edx esi edi
We only care to view these registers. The rest is not important. The list can be customized
differently for different programs. You can also make this register window always floating or
you may dock it, by selecting the option in the upper drop-down menu.

Now place the cursor at the beginning of the main procedure and press F7 to start debugging
the main procedure. You may also place the cursor at any instruction and press F7 to run the
program until that instruction. This is useful if you don't want to view the execution of each
instruction separately.

Now press F10 to watch the execution of each instruction separately in the main procedure,
and to view the changes in the registers at each step. These value changes appear in red. The
next instruction in the source window is highlighted. This instruction is not executed yet, but
will be executed the next time that you press F10.

Try first to guess and understand the values of the registers in the above program. Write these
values in decimal for the TYPE, LENGTHOF, and SIZEOF operators, and in hexadecimal
for the OFFSET and PTR operators. By default, all register values appear in hexadecimal.
You will have to convert them to decimal for the LENGTHOF and SIZEOF operators.

COE 205 Lab Manual Lab 3: Defining Data and Symbolic Constants - page 33

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

TYPE Operator

LENGTHOF Operator

SIZEOF Operator

OFFSET Operator

PTR Operator

3.7 Lab Work: Symbolic Constants and the EQU and = directives
A symbolic constant is created by associating an identifier (a symbol) with either an integer
expression or some text. Unlike a variable definition, which reserves storage, a symbolic
constant does not use any storage. The value of a symbolic constant is defined by the
assembler and does not change at run time.

The EQU (Equal) directive associates a symbolic name with either an integer expression or
some arbitrary text, according to the following formats:
name EQU expression

name EQU <text>

A symbol defined with EQU cannot be redefined in the same source code file. This prevents
an existing symbol from being inadvertently assigned a new value.

Unlike the EQU directive, the = directive can redefine a symbol any number of times. The =
directive can associate a symbolic name with an integer expression only according to the
following format. However, the = directive cannot associate a symbol with text.
name = expression

al = bl = cl = dl =

eax (decimal) =

ebx (decimal) =

ecx (decimal) =

edx (decimal) =

eax (decimal) =

ebx (decimal) =

ecx (decimal) =

edx (decimal) =

al (hex) =

bx (hex) =

cx (hex) =

edx (hex) =

eax (hex) =

ebx (hex) =

edx (hex) =

esi (hex) =

ecx (hex) = edi (hex) =

COE 205 Lab Manual Lab 3: Defining Data and Symbolic Constants - page 34

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

The following program illustrates the definition of symbolic constants:

TITLE Symbolic Constants (File: Constants.asm)
; Demonstration of EQU and = directives

.686
.MODEL flat, stdcall
.STACK

INCLUDE Irvine32.inc

.data
Rows EQU 3
Cols EQU 3
Elements EQU Rows * Cols
CR EQU 10
LF EQU 13
PromptText EQU <"Press any key to continue ...",CR,LF,0>

matrix WORD Elements DUP(0)
prompt BYTE PromptText

COUNT = 10h
COUNT = 100h
COUNT = 1000h
COUNT = SIZEOF matrix

.code
main PROC
 exit
main ENDP
END main

Fill the table below, listing only the symbolic constants in the above Program and their values
in hexadecimal. If a symbolic constant is redefined then it should be listed multiple times.

Symbolic Constant Value (hexadecimal)

What is the total number of bytes allocated for data? ..

COE 205 Lab Manual Lab 3: Defining Data and Symbolic Constants - page 35

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

3.8 Lab Work: Viewing Symbolic Constants in the Listing (.lst) File
Open a command prompt and type: ml –c –Zi –Fl –coff Constants.asm. The ML
program is the assembler. It will generate the Constants.obj and Constants.lst files. The
Constants.obj is the object file and contains the machine code. The Constants.lst file is a
listing file produced optionally when you use the –Fl option with the ML command. Open
the Constants.lst file and examine its contents. This file shows the work of the assembler and
contains a copy of the assembly language source code, offset addresses, translated machine
code, procedures, and symbols. The symbolic constants and their values are listed in this file.
Examine the content of the Constants.lst file, and check the values of the symbolic constants.
Notice that the symbolic constant values are listed in hexadecimal.

Review Questions
1. Write a data declaration for an 8-bit unsigned integer variable.

2. Write a data declaration for a 32-bit signed integer variable.

3. Declare a 16-bit signed integer and initialize it with the smallest negative 16-bit number.

4. Declare an unsigned 16-bit integer variable wArray that uses three initializers.

5. Declare an uninitialized array of 50 unsigned 32-bit integers named dArray.

6. Declare a string variable containing the word “TEST” repeated 100 times.

7. Show the order of individual bytes in memory (lowest to highest) for the following:
 dvar DWORD 5012AB6Fh

8. Consider the following array declaration: myArray DWORD 30 DUP(5 DUP(0))

 Define a symbolic constant Elements that calculates the number of elements in myArray.

 Define a symbolic constant Size that calculates the number of bytes in myArray.

