
Data Representation

COE 205

Computer Organization and Assembly Language

Dr. Aiman El-Maleh

College of Computer Sciences and Engineering

King Fahd University of Petroleum and Minerals

[Adapted from slides of Dr. Kip Irvine: Assembly Language for Intel-Based Computers]

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 2

Outline

 Introduction

 Numbering Systems

 Binary & Hexadecimal Numbers

 Base Conversions

 Integer Storage Sizes

 Binary and Hexadecimal Addition

 Signed Integers and 2's Complement Notation

 Binary and Hexadecimal subtraction

 Carry and Overflow

 Character Storage

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 3

Introduction
 Computers only deal with binary data (0s and 1s), hence all data

manipulated by computers must be represented in binary format.

 Machine instructions manipulate many different forms of data:

 Numbers:

 Integers: 33, +128, -2827

 Real numbers: 1.33, +9.55609, -6.76E12, +4.33E-03

 Alphanumeric characters (letters, numbers, signs, control characters):

examples: A, a, c, 1 ,3, ", +, Ctrl, Shift, etc.

 Images (still or moving): Usually represented by numbers representing

the Red, Green and Blue (RGB) colors of each pixel in an image,

 Sounds: Numbers representing sound amplitudes sampled at a certain

rate (usually 20kHz).

 So in general we have two major data types that need to be

represented in computers; numbers and characters.

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 4

Numbering Systems

 Numbering systems are characterized by their base

number.

 In general a numbering system with a base r will have r
different digits (including the 0) in its number set. These

digits will range from 0 to r-1

 The most widely used numbering systems are listed in

the table below:

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 5

Binary Numbers

 Each digit (bit) is either 1 or 0

 Each bit represents a power of 2

 Every binary number is a sum of powers of 2

1 1 1 1 1 1 1 1

27 26 25 24 23 22 21 20

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 6

Converting Binary to Decimal

Weighted positional notation shows how to calculate

the decimal value of each binary bit:

Decimal = (dn-1  2n-1) + (dn-2  2n-2) + ... + (d1  21) + (d0  20)

d = binary digit

 binary 10101001 = decimal 169:

(1  27) + (1  25) + (1  23) + (1  20) = 128+32+8+1=169

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 7

Convert Unsigned Decimal to Binary

 Repeatedly divide the decimal integer by 2. Each

remainder is a binary digit in the translated value:

37 = 100101
stop when

quotient is zero

least significant bit

most significant bit

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 8

Another Procedure for Converting from
Decimal to Binary

 Start with a binary representation of all 0’s

 Determine the highest possible power of two that is less

or equal to the number.

 Put a 1 in the bit position corresponding to the highest

power of two found above.

 Subtract the highest power of two found above from the

number.

 Repeat the process for the remaining number

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 9

Another Procedure for Converting from
Decimal to Binary

 Example: Converting 76d to Binary

 The highest power of 2 less or equal to 76 is 64, hence the

seventh (MSB) bit is 1

 Subtracting 64 from 76 we get 12.

 The highest power of 2 less or equal to 12 is 8, hence the fourth

bit position is 1

 We subtract 8 from 12 and get 4.

 The highest power of 2 less or equal to 4 is 4, hence the third bit

position is 1

 Subtracting 4 from 4 yield a zero, hence all the left bits are set to

0 to yield the final answer

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 10

Hexadecimal Integers

 Binary values are represented in hexadecimal.

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 11

Converting Binary to Hexadecimal
 Each hexadecimal digit corresponds to 4 binary bits.

 Example: Translate the binary integer

000101101010011110010100 to hexadecimal

M1023.swf

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 12

Converting Hexadecimal to Binary

 Each Hexadecimal digit can be replaced by its 4-bit

binary number to form the binary equivalent.

M1021.swf

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 13

Converting Hexadecimal to Decimal

Multiply each digit by its corresponding power of 16:

Decimal = (d3  163) + (d2  162) + (d1  161) + (d0  160)

d = hexadecimal digit

 Examples:

 Hex 1234 = (1  163) + (2  162) + (3  161) + (4  160) =

Decimal 4,660

 Hex 3BA4 = (3  163) + (11 * 162) + (10  161) + (4  160) =

Decimal 15,268

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 14

Converting Decimal to Hexadecimal

Decimal 422 = 1A6 hexadecimal

stop when

quotient is zero

least significant digit

most significant digit

 Repeatedly divide the decimal integer by 16. Each

remainder is a hex digit in the translated value:

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 15

Integer Storage Sizes

byte

16

8

32

word

doubleword

64quadword

What is the largest unsigned integer that may be stored in 20 bits?

Standard sizes:

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 16

Binary Addition

 Start with the least significant bit (rightmost bit)

 Add each pair of bits

 Include the carry in the addition, if present

0 0 0 0 0 1 1 1

0 0 0 0 0 1 0 0

+

0 0 0 0 1 0 1 1

1

(4)

(7)

(11)

carry:

01234bit position: 567

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 17

Hexadecimal Addition

 Divide the sum of two digits by the number base (16).

The quotient becomes the carry value, and the

remainder is the sum digit.

36 28 28 6A
42 45 58 4B
78 6D 80 B5

11

21 / 16 = 1, remainder 5

Important skill: Programmers frequently add and subtract the

addresses of variables and instructions.

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 18

Signed Integers

 Several ways to represent a signed number

 Sign-Magnitude

 1's complement

 2's complement

 Divide the range of values into 2 equal parts

 First part corresponds to the positive numbers (≥ 0)

 Second part correspond to the negative numbers (< 0)

 Focus will be on the 2's complement representation

 Has many advantages over other representations

 Used widely in processors to represent signed integers

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 19

Two's Complement Representation

8-bit Binary

value

Unsigned

value

Signed

value

00000000 0 0

00000001 1 +1

00000010 2 +2

.

01111110 126 +126

01111111 127 +127

10000000 128 -128

10000001 129 -127

.

11111110 254 -2

11111111 255 -1

 Positive numbers

 Signed value = Unsigned value

 Negative numbers

 Signed value = Unsigned value - 2n

 n = number of bits

 Negative weight for MSB

 Another way to obtain the signed

value is to assign a negative weight

to most-significant bit

= -128 + 32 + 16 + 4 = -76

1 0 1 1 0 1 0 0

-128 64 32 16 8 4 2 1

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 20

Forming the Two's Complement

Sum of an integer and its 2's complement must be zero:

00100100 + 11011100 = 00000000 (8-bit sum)  Ignore Carry

The easiest way to obtain the 2's complement of a

binary number is by starting at the LSB, leaving all the

0s unchanged, look for the first occurrence of a 1. Leave

this 1 unchanged and complement all the bits after it.

starting value 00100100 = +36

step1: reverse the bits (1's complement) 11011011

step 2: add 1 to the value from step 1 + 1

sum = 2's complement representation 11011100 = -36

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 21

Sign Bit

Highest bit indicates the sign. 1 = negative, 0 = positive

1 1 1 1 0 1 1 0

0 0 0 0 1 0 1 0

sign bit

Negative

Positive

If highest digit of a hexadecimal is > 7, the value is negative

Examples: 8A and C5 are negative bytes

A21F and 9D03 are negative words

B1C42A00 is a negative double-word

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 22

Sign Extension

Step 1: Move the number into the lower-significant bits

Step 2: Fill all the remaining higher bits with the sign bit

 This will ensure that both magnitude and sign are correct

 Examples

 Sign-Extend 10110011 to 16 bits

 Sign-Extend 01100010 to 16 bits

 Infinite 0s can be added to the left of a positive number

 Infinite 1s can be added to the left of a negative number

10110011 = -77 11111111 10110011 = -77

01100010 = +98 00000000 01100010 = +98

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 23

Two's Complement of a Hexadecimal

 To form the two's complement of a hexadecimal

 Subtract each hexadecimal digit from 15

 Add 1

 Examples:

 2's complement of 6A3D = 95C3

 2's complement of 92F0 = 6D10

 2's complement of FFFF = 0001

 No need to convert hexadecimal to binary

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 24

Two's Complement of a Hexadecimal

 Start at the least significant digit, leaving all the 0s

unchanged, look for the first occurrence of a non-zero

digit.

 Subtract this digit from 16.

 Then subtract all remaining digits from 15.

 Examples:

 2's complement of 6A3D = 95C3

 2's complement of 92F0 = 6D10

 2's complement of FFFF = 0001

F F F 16

- 6 A 3 D

9 5 C 3

F F 16

- 9 2 F 0

6 D 1 0

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 25

Binary Subtraction

When subtracting A – B, convert B to its 2's complement

 Add A to (–B)

0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 (2's complement)

0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 (same result)

 Carry is ignored, because

 Negative number is sign-extended with 1's

 You can imagine infinite 1's to the left of a negative number

 Adding the carry to the extended 1's produces extended zeros

Practice: Subtract 00100101 from 01101001.

– +

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 26

Hexadecimal Subtraction

When a borrow is required from the digit to the left,

add 16 (decimal) to the current digit's value

 Last Carry is ignored

Practice: The address of var1 is 00400B20. The address of the

next variable after var1 is 0040A06C. How many bytes are used

by var1?

C675

A247

242E

-1

-

16 + 5 = 21

C675

5DB9 (2's complement)

242E (same result)

1

+

1

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 27

Ranges of Signed Integers

The unsigned range is divided into two signed ranges for positive

and negative numbers

Practice: What is the range of signed values that may be stored

in 20 bits?

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 28

Carry and Overflow

 Carry is important when …

 Adding or subtracting unsigned integers

 Indicates that the unsigned sum is out of range

 Either < 0 or > maximum unsigned n-bit value

 Overflow is important when …

 Adding or subtracting signed integers

 Indicates that the signed sum is out of range

 Overflow occurs when

 Adding two positive numbers and the sum is negative

 Adding two negative numbers and the sum is positive

 Can happen because of the fixed number of sum bits

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 29

0 1 0 0 0 0 0 0

0 1 0 0 1 1 1 1
+

1 0 0 0 1 1 1 1

79

64

143

(-113)
Carry = 0 Overflow = 1

1

1 0 0 1 1 1 0 1

1 1 0 1 1 0 1 0
+

0 1 1 1 0 1 1 1

218 (-38)

157 (-99)

119

Carry = 1 Overflow = 1

111

Carry and Overflow Examples
We can have carry without overflow and vice-versa

 Four cases are possible

1 1 1 1 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 0 0 1 1 1

15

245 (-8)

7

Carry = 1 Overflow = 0

11111

0 0 0 0 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 1 0 1 1 1

15

8

23

Carry = 0 Overflow = 0

1

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 30

Character Storage

 Character sets

 Standard ASCII: 7-bit character codes (0 – 127)

 Extended ASCII: 8-bit character codes (0 – 255)

 Unicode: 16-bit character codes (0 – 65,535)

 Unicode standard represents a universal character set

 Defines codes for characters used in all major languages

 Used in Windows-XP: each character is encoded as 16 bits

 UTF-8: variable-length encoding used in HTML

 Encodes all Unicode characters

 Uses 1 byte for ASCII, but multiple bytes for other characters

 Null-terminated String

 Array of characters followed by a NULL character

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 31

ASCII Codes

 Examples:

 ASCII code for space character = 20 (hex) = 32 (decimal)

 ASCII code for ‘A' = 41 (hex) = 65 (decimal)

 ASCII code for 'a' = 61 (hex) = 97 (decimal)

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 32

Control Characters

 The first 32 characters of ASCII table are used for control

 Control character codes = 00 to 1F (hex)

 Examples of Control Characters

 Character 0 is the NULL character  used to terminate a string

 Character 9 is the Horizontal Tab (HT) character

 Character 0A (hex) = 10 (decimal) is the Line Feed (LF)

 Character 0D (hex) = 13 (decimal) is the Carriage Return (CR)

 The LF and CR characters are used together

 They advance the cursor to the beginning of next line

 One control character appears at end of ASCII table

 Character 7F (hex) is the Delete (DEL) character

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 33

Parity Bit

 Data errors can occur during data transmission or

storage/retrieval.

 The 8th bit in the ASCII code is used for error checking.

 This bit is usually referred to as the parity bit.

 There are two ways for error checking:

 Even Parity: Where the 8th bit is set such that the total number

of 1s in the 8-bit code word is even.

 Odd Parity: The 8th bit is set such that the total number of 1s in

the 8-bit code word is odd.

