Data Representation

COE 205

Computer Organization and Assembly Language
Dr. Aiman El-Maleh

College of Computer Sciences and Engineering
King Fahd University of Petroleum and Minerals

[Adapted from slides of Dr. Kip Irvine: Assembly Language for Intel-Based Computers]

Outline

“* Introduction

“* Numbering Systems

** Binary & Hexadecimal Numbers

“+ Base Conversions

“ Integer Storage Sizes

“* Binary and Hexadecimal Addition

“ Signed Integers and 2's Complement Notation
“ Binary and Hexadecimal subtraction

“ Carry and Overflow

*» Character Storage

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 2

Introduction

s Computers only deal with binary data (Os and 1s), hence all data
manipulated by computers must be represented in binary format.

% Machine instructions manipulate many different forms of data:
< Numbers:
= Integers: 33, +128, -2827
» Real numbers: 1.33, +9.55609, -6.76E12, +4.33E-03

< Alphanumeric characters (letters, numbers, signs, control characters):
examples: A, a, ¢, 1,3, ", +, Ctrl, Shift, etc.

< Images (still or moving): Usually represented by numbers representing
the Red, Green and Blue (RGB) colors of each pixel in an image,

<> Sounds: Numbers representing sound amplitudes sampled at a certain
rate (usually 20kHz).

* So in general we have two major data types that need to be
represented in computers; numbers and characters.

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 3

Numbering Systems

“* Numbering systems are characterized by their base
number.

“ In general a numbering system with a base rwill have r
different digits (including the 0) in its number set. These
digits will range from O to -1

¢ The most widely used numbering systems are listed in
the table below:

jumberg Sysiem Basel Digis Sel

Binary 2 10

Qctal g 76543210

Decimal 10 |9876543210
Hexadecimal 16 |[FEDCBA93876543210

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 4

Binary Numbers

*» Each digit (bit) is either 1 or O

“+ Each bit represents a power of 2

1

11111

1111

27

26 25 24 23

¢ Every binary number is a sum of powers of 2

Table 1-3 Binary Bit Position Values.

22 2t 20

2n Decimal Value 2n Decimal Value
20 1 28 256

ol 2 29 512

pr 4 210 1024

2] o1l 2048

24 16 212 4096

23 32 21 8192

26 6 ol4 16384

27 128 215 32768

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM

slide 5

Converting Binary to Decimal

“* Weighted positional notation shows how to calculate
the decimal value of each binary bit:

Decimal = (d, ; x 2™) + (d,,x 2™2) + ... + (d; x 21) + (d, x 20)
d= binary digit

“ binary 10101001 = decimal 169:

(1x2)+ (1 x2%+(1x23+(1x2%=128+32+8+1=169

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 6

Convert Unsigned Decimal to Binary

** Repeatedly divide the decimal integer by 2. Each
remainder is a binary digit in the translated value:

Division

Quotient

Remainder

372

I8

l

<
<

I8 /2

9

0

9/2

|

0

0

~

|

<
<«

\ stop when

37 =100101

Basic Concepts

guotient is zero

least significant bit

most significant bit

COE 205 — Computer Organization and Assembly Language — KFUPM slide 7

Another Procedure for Converting from

Decimal to Binary
» Start with a binary representation of all O’'s

“» Determine the highest possible power of two that is less
or equal to the number.

“ Put a 1 in the bit position corresponding to the highest
power of two found above.

“ Subtract the highest power of two found above from the
number.

“* Repeat the process for the remaining number

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 8

Another Procedure for Converting from

Decimal to Binary

*» Example: Converting 76d to Binary

< The highest power of 2 less or equal to 76 is 64, hence the

seventh (MSB)

bitis 1

< Subtracting 64 from 76 we get 12.
< The highest power of 2 less or equal to 12 is 8, hence the fourth

bit position is 1

¢ %

position is 1

-
]

-
]

We subtract 8 from 12 and get 4.

-
]

-

The highest power of 2 less or equal to 4 is 4, hence the third bit

<> Subtracting 4 from 4 yield a zero, hence all the left bits are set to
O to yield the final answer

Basic Concepts

COE 205 — Computer Organization and Assembly Language — KFUPM

slide 9

Hexadecimal Integers

“* Binary values are represented in hexadecimal.

Table 1-5 Binary, Decimal, and Hexadecimal Equivalents.

Binary Decimal Hexadecimal Binary Decimal | Hexadecimal
0000 0 0 1 000 8 8
0001 l l 1001 0 9
0010 2 2 1010 10 A
0011 3 3 1011 1 B
0100 4 4 1 100 12 C
0101 5 5 1101 13 D
0110 6 6 1110 14 E
0111 7 7 [111 15 F
Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM

slide 10

Converting Binary to Hexadecimal

*» Each hexadecimal digit corresponds to 4 binary bits.

s Example: Translate the binary integer
000101101010011110010100 to hexadecimal

l

8

A

._1_

0001

0110

1010

0111 1001

0100

7

Binary

;.Y._lh_Y._J

B

Hexadecimal

Basic Concepts

M1023.swf

COE 205 — Computer Organization and Assembly Language — KFUPM

slide 11

Converting Hexadecimal to Binary

*» Each Hexadecimal digit can be replaced by its 4-bit
binary number to form the binary equivalent.

Hexadecimal
FORABS

Foio!
—]

T Toooo! Tiooo ! 111!, o101 !
I —a sl _al —_——dall_ _

Binary

1111 0000 1000 1010 1011 0101

M1021.swf

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 12

Converting Hexadecimal to Decimal

s Multiply each digit by its corresponding power of 16:
Decimal = (d3 x 163) + (d2 x 162) + (d1 x 161) + (d0 x 169)
d = hexadecimal digit
s Examples:
< Hex 1234 = (1 x 168) + (2 x 162) + (3 x 161) + (4 x 169) =
Decimal 4,660
< Hex 3BA4 = (3 x 163) + (11 * 162) + (10 x 16%) + (4 x 16°) =
Decimal 15,268

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM

slide 13

Converting Decimal to Hexadecimal

** Repeatedly divide the decimal integer by 16. Each
remainder is a hex digit in the translated value:

Division Quotient Remainder
422/ 16 26 6 < least significant digit
26/ 16 | A
1/16 0 | most significant digit
. g g

\ stop when

guotient is zero

Decimal 422 = 1A6 hexadecimal

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 14

Integer Storage Sizes

byte | 8
Standard sizes: word | 16
doubleword 32
quadword 64
Table 1-4 Ranges of Unsigned Integers.
Storage Type Range (low-high) Powers of 2

Unsigned bvte

0 to 255

0 to :_28 — 1)

Unsigned word

(1o 63,535

0t :__’T’JE’— [}

Unsigned doubleword

() to 4,294,967.,295

32
Otoi(27=-1)

Unsigned quadword

0 to 18.446,744.073,709.551.615

0t :_2'5'4 — 1)

What is the largest unsigned integer that may be stored in 20 bits?

Basic Concepts

COE 205 — Computer Organization and Assembly Language — KFUPM

slide 15

Binary Addition

» Start with the least significant bit (rightmost bit)
“+ Add each pair of bits

“ Include the carry in the addition, if present

carry: 1

ojojojoloj1/0|0 (@

+ |olojojolo|1|1]21] (D

0/0/0]0]1 /011 (1

bit position: 7 6 5 4 3 2 1 O

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 16

Hexadecimal Addition

¢ Divide the sum of two digits by the number base (16).
The guotient becomes the carry value, and the
remainder is the sum digit.

1 1
36 28 28 6A
42 45 58 4B
/8 6D 80 B5

T

21/16 =1, remainder 5

Important skill: Programmers frequently add and subtract the
addresses of variables and instructions.

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM

slide 17

Sighed Integers

“ Several ways to represent a sighed number
< Sign-Magnitude
< 1's complement
< 2's complement

¢ Divide the range of values into 2 equal parts
< First part corresponds to the positive numbers (= 0)

<> Second part correspond to the negative numbers (< 0)

¢ Focus will be on the 2's complement representation
<> Has many advantages over other representations

<> Used widely in processors to represent signed integers

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 18

Two's Complement Representation

¢+ Positive numbers

< Signed value = Unsigned value

“* Negative numbers
< Signed value = Unsigned value - 2”

<> n=number of bits

“* Negative weight for MSB

< Another way to obtain the signed
value is to assign a negative weight
to most-significant bit

1/0/1/1/0]1]0|0

-128 64 32 16 8 4 2 1

=-128+32+16+4=-76

8-bit Binary | Unsigned | Signed
value value value
00000000 0 0
00000001 1 +1
00000010 2 +2
01111110 126 +126
01111111 127 +127
10000000 128 -128
10000001 129 -127
11111110 254 -2
11111111 255 -1

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM

slide 19

Forming the Two's Complement

starting value 00100100 = +36
stepl: reverse the bits (1's complement) 11011011
step 2: add 1 to the value from step 1 + 1
sum = 2's complement representation 11011100 = -36

Sum of an integer and its 2's complement must be zero:
00100100 + 11011100 = 00000000 (8-bit sum) = Ignore Carry

The easiest way to obtain the 2's complement of a
binary number is by starting at the LSB, leaving all the
Os unchanged, look for the first occurrence of a 1. Leave
this 1 unchanged and complement all the bits after it.

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 20

Sign Bit
Highest bit indicates the sign. 1 = negative, 0 = positive

sign bit

!

1 /11,1011 0

Negative

cj0)07011,0)170 Positive

If highest digit of a hexadecimal is > 7, the value is negative
Examples: 8A and C5 are negative bytes

A21F and 9D03 are negative words

B1C42A00 is a negative double-word

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 21

Sign Extension

Step 1: Move the number into the lower-significant bits
Step 2: Fill all the remaining higher bits with the sign bit
¢ This will ensure that both magnitude and sign are correct
“ Examples
< Sign-Extend 10110011 to 16 bits
10110011 = -77 [111111@0110011

< Sign-Extend 01100010 to 16 bits
01100010 = +98 [000000‘0/%1100010 = +98

-77

* Infinite Os can be added to the left of a positive number

** Infinite 1s can be added to the left of a negative number

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 22

Two's Complement of a Hexadecimal

¢ To form the two's complement of a hexadecimal
< Subtract each hexadecimal digit from 15
< Add 1

“ Examples:
< 2's complement of 6A3D = 95C3

< 2's complement of 92F0 = 6D10
< 2's complement of FFFF = 0001

“* No need to convert hexadecimal to binary

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 23

Two's Complement of a Hexadecimal

» Start at the least significant digit, leaving all the Os
unchanged, look for the first occurrence of a non-zero

digit.
s Subtract this digit from 16.
¢ Then subtract all remaining digits from 15.
“ Examples:

<> 2's complement of 6A3D = 95C3 FFF16
- 6A3 D
< 2's complement of 92F0 =6D10 -

< 2's complement of FFFF = 0001

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM

slide 24

Binary Subtraction

“* When subtracting A — B, convert B to its 2's complement
“ Add A to (-B)

00001100 00001100

— +
00000010 11111110 (2'scomplement)
00001010 O0001010 (same result)

 Carry is ignored, because
< Negative number is sign-extended with 1's
< You can imagine infinite 1's to the left of a negative number
< Adding the carry to the extended 1's produces extended zeros

Practice: Subtract 00100101 from 01101001.

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 25

Hexadecimal Subtraction

“* When a borrow is required from the digit to the left,
add 16 (decimal) to the current digit's value

16 + 5 =21
1 11
C675 C675
- —> +
A247 5DB9 (2's complement)
242E 242E (same result)

¢ Last Carry Is ignored

Practice: The address of varl is 00400B20. The address of the
next variable after varl is 0040A06C. How many bytes are used
by varl?

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 26

Ranges of Signed Integers

The unsigned range is divided into two signed ranges for positive
and negative numbers

Storage Type Range (low-high) Powers of 2

Signed byte —128 to +127 2"t 2" -1

Signed word —32,768 to +32.767 2B weP -1

Signed doubleword —2. 147,483,648 to 2,147.,483.,647 2310 (2‘” — 1)

Signed quadword —9,223,372,036,854,775,808 to 2% 0 (2% - 1)
+9,223,372,036,854,775,807

Practice: What is the range of signed values that may be stored
in 20 bits?

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 27

Carry and Overflow

s Carry is important when ...
<> Adding or subtracting unsigned integers
< Indicates that the unsigned sum is out of range

< Either < 0 or > maximum unsigned +bit value

¢ Overflow is important when ...
<> Adding or subtracting signed integers
< Indicates that the signed sum is out of range

“ Overflow occurs when
< Adding two positive numbers and the sum is negative
< Adding two negative numbers and the sum is positive

<> Can happen because of the fixed number of sum bits

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 28

Carry and Overflow Examples

** We can have carry without overflow and vice-versa
¢ Four cases are possible

1 1 1 1 1 1
o000} |1 |1 1 15 ojojo0ojO0oj1 |11 1 15
+ +
O|0[{0]0]2/0,00 8 1/1/1]1|1, 00| 0] 245(-8)
Oo|o0j|0|1]0]|1 |1 1 23 o000 j]O0|1 1 1 7
Carry =0 Overflow =0 Carry=1 Overflow =0
1 1 1 1
o/1/0|l0|1/1/1/1 79 1/1/0[1/1|0/|1|0 218(-38)
+ +
O|1/{0]0]0|0|0|O0 64 1002|1101/ 15799
1000|212]1|1 1 143 o/1(1/1/]0|1 1 1 119
(-113)
Carry =0 Overflow =1 Carry =1 Overflow =1

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 29

Character Storage

“ Character sets
< Standard ASCII: 7-bit character codes (0 — 127)
< Extended ASCII: 8-bit character codes (0 — 255)
<> Unicode: 16-bit character codes (0 — 65,535)
< Unicode standard represents a universal character set

» Defines codes for characters used in all major languages

= Used in Windows-XP: each character is encoded as 16 bits
< UTF-8: variable-length encoding used in HTML

» Encodes all Unicode characters
» Uses 1 byte for ASCII, but multiple bytes for other characters

“* Null-terminated String

< Array of characters followed by a NULL character

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 30

ASCII Codes

The Charcter set of the ASCII Code

- —

0 1 2 3 4 o b / 8 5 il B C D E

0 NUL S0H STX ETX EOT ENQ ACK BEL BE HT LF VT FF C 30 81
1 DLE DC1 DCZ2 DC3 DC4 NAE SYN ETB CEAN EM SUB ESC F§ G5 R3 US
2 sp | " F 5 % & ! () o+ =, /
3 0 1 2 3 4 5 6 7 : S : . < = » 7
4 B A B C D E F G H I J E L M N o
o E », F. 3 T U v W X b & [\] " .
e ° a b ¢ d e £ g h 1 37 kEk 1 m n o
! p g «r s E u : W OX ! | } ~ DEL

“ Examples:
< ASCII code for space character = 20 (hex) = 32 (decimal)
< ASCII code for ‘A’ = 41 (hex) = 65 (decimal)
< ASCII code for 'a' = 61 (hex) = 97 (decimal)

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 31

Control Characters

*» The first 32 characters of ASCII table are used for control
¢ Control character codes = 00 to 1F (hex)

s Examples of Control Characters
< Character 0O is the NULL character = used to terminate a string
< Character 9 is the Horizontal Tab (HT) character
< Character OA (hex) = 10 (decimal) is the Line Feed (LF)
<> Character OD (hex) = 13 (decimal) is the Carriage Return (CR)
< The LF and CR characters are used together
» They advance the cursor to the beginning of next line
¢ One control character appears at end of ASCII table
< Character 7F (hex) is the Delete (DEL) character

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 32

Parity Bit
“ Data errors can occur during data transmission or
storage/retrieval.
¢ The 8th bit in the ASCII code is used for error checking.
¢ This bit is usually referred to as the parity bit.

“* There are two ways for error checking:

< Even Parity: Where the 8th bit is set such that the total number
of 1s in the 8-bit code word is even. P

<> Odd Parity: The 8th bit is set such that the total number of 1s in
the 8-bit code word is odd.

F

Basic Concepts COE 205 — Computer Organization and Assembly Language — KFUPM slide 33

