Data Representation

COE 205

Computer Organization and Assembly Language Dr. Aiman El-Maleh

College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals
[Adapted from slides of Dr. Kip Irvine: Assembly Language for Intel-Based Computers]

Outline

* Introduction
* Numbering Systems
* Binary \& Hexadecimal Numbers
* Base Conversions
* Integer Storage Sizes
* Binary and Hexadecimal Addition
* Signed Integers and 2's Complement Notation
* Binary and Hexadecimal subtraction
* Carry and Overflow
* Character Storage

Introduction

* Computers only deal with binary data (0s and 1s), hence all data manipulated by computers must be represented in binary format.
* Machine instructions manipulate many different forms of data:
\triangleleft Numbers:
- Integers: 33, +128, -2827
- Real numbers: 1.33, +9.55609, -6.76E12, +4.33E-03
\diamond Alphanumeric characters (letters, numbers, signs, control characters): examples: A, a, c, 1 ,3, ", +, Ctrl, Shift, etc.
\diamond Images (still or moving): Usually represented by numbers representing the Red, Green and Blue (RGB) colors of each pixel in an image,
\diamond Sounds: Numbers representing sound amplitudes sampled at a certain rate (usually 20 kHz).
* So in general we have two major data types that need to be represented in computers; numbers and characters.

Numbering Systems

* Numbering systems are characterized by their base number.
* In general a numbering system with a base r will have r different digits (including the 0) in its number set. These digits will range from 0 to $r-1$
* The most widely used numbering systems are listed in the table below:

Numbering System	Base	Digits Set
Binary	2	10
Octal	8	76543210
Decimal	10	9876543210
Hexadecimal	16	FEDCBA9876543210

Binary Numbers

\star Each digit (bit) is either 1 or 0

* Each bit represents a power of 2

1	1	1	1	1	1	1	1
2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}

\star Every binary number is a sum of powers of 2
Table 1-3 Binary Bit Position Values.

$\mathbf{2}^{\mathbf{n}}$	Decimal Value	$\mathbf{2}^{\mathbf{n}}$	Decimal Value
2^{0}	1	2^{8}	256
2^{1}	2	2^{9}	512
2^{2}	4	2^{10}	1024
2^{3}	8	2^{11}	2048
2^{4}	32	2^{12}	4096
2^{5}	64	2^{13}	8192
2^{6}	128	2^{14}	16384
2^{7}		2^{15}	32768

Converting Binary to Decimal

* Weighted positional notation shows how to calculate the decimal value of each binary bit:

$$
\text { Decimal }=\left(d_{n-1} \times 2^{n-1}\right)+\left(d_{n-2} \times 2^{n-2}\right)+\ldots+\left(d_{1} \times 2^{1}\right)+\left(d_{0} \times 2^{0}\right)
$$

$d=$ binary digit

* binary $10101001=$ decimal 169:
$\left(1 \times 2^{7}\right)+\left(1 \times 2^{5}\right)+\left(1 \times 2^{3}\right)+\left(1 \times 2^{0}\right)=128+32+8+1=169$

Convert Unsigned Decimal to Binary

* Repeatedly divide the decimal integer by 2. Each remainder is a binary digit in the translated value:

Division	Quotient	Remainder
$37 / 2$	18	1
$18 / 2$	9	0
$9 / 2$	4	1
$4 / 2$	2	0
$2 / 2$	1	0
$1 / 2$	0	1

Another Procedure for Converting from Decimal to Binary

* Start with a binary representation of all 0's
* Determine the highest possible power of two that is less or equal to the number.
* Put a 1 in the bit position corresponding to the highest power of two found above.
* Subtract the highest power of two found above from the number.
* Repeat the process for the remaining number

Another Procedure for Converting from Decimal to Binary

* Example: Converting 76d to Binary
\diamond The highest power of 2 less or equal to 76 is 64 , hence the seventh (MSB) bit is 1
\diamond Subtracting 64 from 76 we get 12.
\diamond The highest power of 2 less or equal to 12 is 8 , hence the fourth bit position is 1

1

1	0	0	1	.	.	.

\diamond We subtract 8 from 12 and get 4 .
\triangleleft The highest power of 2 less or equal to 4 is 4 , hence the third bit position is 1

1	0	0	1	1	.	.

\triangleleft Subtracting 4 from 4 yield a zero, hence all the left bits are set to 0 to yield the final answer

1	0	0	1	1	0	0

Hexadecimal Integers

* Binary values are represented in hexadecimal.

Table 1-5 Binary, Decimal, and Hexadecimal Equivalents.

Binary	Decimal	Hexadecimal	Binary	Decimal	Hexadecimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	10	A
0011	3	3	1011	11	B
0100	4	4	1100	12	C
0101	5	6	1101	13	D
0110	6	7	1110	14	F
0111	7		111	15	

Converting Binary to Hexadecimal

* Each hexadecimal digit corresponds to 4 binary bits.
* Example: Translate the binary integer 000101101010011110010100 to hexadecimal

1	6	A	7	9	4
0001	0110	1010	0111	1001	0100

M1023.swf

Converting Hexadecimal to Binary

* Each Hexadecimal digit can be replaced by its 4-bit binary number to form the binary equivalent.

M1021.swf

Converting Hexadecimal to Decimal

* Multiply each digit by its corresponding power of 16 :

Decimal $=\left(\mathrm{d} 3 \times 16^{3}\right)+\left(\mathrm{d} 2 \times 16^{2}\right)+\left(\mathrm{d} 1 \times 16^{1}\right)+\left(\mathrm{d} 0 \times 16^{0}\right)$
d = hexadecimal digit

* Examples:
$\triangleleft \operatorname{Hex} 1234=\left(1 \times 16^{3}\right)+\left(2 \times 16^{2}\right)+\left(3 \times 16^{1}\right)+\left(4 \times 16^{0}\right)=$ Decimal 4,660
\diamond Hex 3BA4 $=\left(3 \times 16^{3}\right)+\left(11^{*} 16^{2}\right)+\left(10 \times 16^{1}\right)+\left(4 \times 16^{0}\right)=$ Decimal 15,268

Converting Decimal to Hexadecimal

* Repeatedly divide the decimal integer by 16. Each remainder is a hex digit in the translated value:

Division	Quotient	Remainder
$422 / 16$	26	6
	1	A
	0	1

Decimal $422=1$ A6 hexadecimal

Integer Storage Sizes

Standard sizes:

Table 1-4 Ranges of Unsigned Integers.

Storage Type	Range (low-high)	Powers of 2
Unsigned byte	0 to 255	0 to $\left(2^{8}-1\right)$
Unsigned word	0 to 65,535	0 to $\left(2^{16}-1\right)$
Unsigned doubleword	0 to $4,294,967,295$	0 to $\left(2^{32}-1\right)$
Unsigned quadword	0 to $18,446,744,073,709,551,615$	0 to $\left(2^{64}-1\right)$

What is the largest unsigned integer that may be stored in 20 bits?

Binary Addition

* Start with the least significant bit (rightmost bit)
* Add each pair of bits
* Include the carry in the addition, if present

	carry: 1								(4)
	0	0	0	0	0	1	0	0	
+	0	0	0	0	0	1	1	1	(7)
	0	0	0	0	1	0	1	1	(11)
bit position:	7	6	5	4	3	2	1	0	

Hexadecimal Addition

Divide the sum of two digits by the number base (16). The quotient becomes the carry value, and the remainder is the sum digit.

[^0]
Signed Integers

* Several ways to represent a signed number
\diamond Sign-Magnitude
$\triangleleft 1$'s complement
\diamond 2's complement
* Divide the range of values into 2 equal parts
\diamond First part corresponds to the positive numbers (≥ 0)
\triangleleft Second part correspond to the negative numbers (<0)
* Focus will be on the 2's complement representation
\diamond Has many advantages over other representations
\diamond Used widely in processors to represent signed integers

Two's Complement Representation

* Positive numbers
\diamond Signed value = Unsigned value
* Negative numbers
\diamond Signed value $=$ Unsigned value -2^{n}
$\diamond n=$ number of bits
\star Negative weight for MSB
\diamond Another way to obtain the signed value is to assign a negative weight to most-significant bit

1	0	1	1	0	1	0	0
-128	64	32	16	8	4	2	1

$=-128+32+16+4=-76$

8 -bit Binary value	Unsigned value	Signed value
00000000	0	0
00000001	1	+1
00000010	2	+2
\ldots	\ldots	\ldots
01111110	126	+126
01111111	127	+127
10000000	128	-128
10000001	129	-127
\ldots	\ldots	\ldots
11111110	254	-2
11111111	255	-1

Forming the Two's Complement

starting value	$00100100=+36$
step1: reverse the bits (1's complement)	11011011
step 2: add 1 to the value from step 1	+11
sum = 2's complement representation	$11011100=-36$

Sum of an integer and its 2's complement must be zero: $00100100+11011100=00000000$ (8 -bit sum) \Rightarrow Ignore Carry

The easiest way to obtain the 2's complement of a binary number is by starting at the LSB, leaving all the Os unchanged, look for the first occurrence of a 1 . Leave this 1 unchanged and complement all the bits after it.

Sign Bit

Highest bit indicates the sign. $1=$ negative, $0=$ positive

If highest digit of a hexadecimal is >7, the value is negative
Examples: 8A and C5 are negative bytes
A21F and 9D03 are negative words
B1C42A00 is a negative double-word

Sign Extension

Step 1: Move the number into the lower-significant bits
Step 2: Fill all the remaining higher bits with the sign bit

* This will ensure that both magnitude and sign are correct
* Examples
\triangleleft Sign-Extend 10110011 to 16 bits

$$
10110011=-77 \quad 11111111(10110011=-77
$$

\diamond Sign-Extend 01100010 to 16 bits

$$
01100010=+98 \longmapsto 0000000001100010=+98
$$

* Infinite 0s can be added to the left of a positive number
$\%$ Infinite 1s can be added to the left of a negative number

Two's Complement of a Hexadecimal

* To form the two's complement of a hexadecimal
\diamond Subtract each hexadecimal digit from 15
\diamond Add 1
* Examples:
$\checkmark 2$'s complement of 6A3D $=95 \mathrm{C} 3$
$\diamond 2$'s complement of 92F0 $=$ 6D10
$\diamond 2$'s complement of FFFF $=0001$
* No need to convert hexadecimal to binary

Two's Complement of a Hexadecimal

* Start at the least significant digit, leaving all the 0s unchanged, look for the first occurrence of a non-zero digit.
* Subtract this digit from 16.
* Then subtract all remaining digits from 15.
* Examples:
$\triangleleft 2$'s complement of 6A3D $=95 \mathrm{C} 3$

F F F 16	F F 16
-6 A 3 D	-92 F 0
$------------------~$	6 D 10

Binary Subtraction

* When subtracting A - B, convert B to its 2's complement
* Add A to (-B)

00001100
-00000010
00001010

$+$| 00001100 |
| ---: |
| +11111110 |
| 00001010 |

* Carry is ignored, because
\diamond Negative number is sign-extended with 1's
\diamond You can imagine infinite 1's to the left of a negative number
\checkmark Adding the carry to the extended 1's produces extended zeros
Practice: Subtract 00100101 from 01101001.

Hexadecimal Subtraction

* When a borrow is required from the digit to the left, add 16 (decimal) to the current digit's value

* Last Carry is ignored

Practice: The address of var1 is 00400B20. The address of the next variable after var1 is 0040A06C. How many bytes are used by var1?

Ranges of Signed Integers

The unsigned range is divided into two signed ranges for positive and negative numbers

Storage Type	Range (low-high)	Powers of 2
Signed byte	-128 to +127	-2^{7} to $\left(2^{7}-1\right)$
Signed word	$-32,768$ to $+32,767$	-2^{15} to $\left(2^{15}-1\right)$
Signed doubleword	$-2,147,483,648$ to $2,147,483,647$	-2^{31} to $\left(2^{31}-1\right)$
Signed quadword	$-9,223,372,036,854,775,808$ to $+9,223,372,036,854,775,807$	-2^{63} to $\left(2^{63}-1\right)$

Practice: What is the range of signed values that may be stored in 20 bits?

Carry and Overflow

* Carry is important when ...
\diamond Adding or subtracting unsigned integers
\diamond Indicates that the unsigned sum is out of range
\diamond Either <0 or $>$ maximum unsigned n-bit value
* Overflow is important when ...
\diamond Adding or subtracting signed integers
\diamond Indicates that the signed sum is out of range
* Overflow occurs when
\diamond Adding two positive numbers and the sum is negative
\triangleleft Adding two negative numbers and the sum is positive
\diamond Can happen because of the fixed number of sum bits

Carry and Overflow Examples

* We can have carry without overflow and vice-versa
* Four cases are possible

0	0	0	0	1	1	1	1	15
0	0	0	0	1	0	0	0	8
0	0		0	1	0	1	1	1
0	0	0	1	0	1	1	1	
Carry 00						Overflow $=0$		

1						
0 1 0 0 1 1 1 1 79 0 1 0 0 0 0 0 0 64 1 0 0 0 1 1 1 1 143 6 0 0 0 1 1 1 1 (-113)						
Carry $=0$ Overflow $=1$						

Character Storage

* Character sets
\triangleleft Standard ASCII: 7-bit character codes (0-127)
\triangleleft Extended ASCII: 8-bit character codes ($0-255$)
\diamond Unicode: 16-bit character codes ($0-65,535$)
\diamond Unicode standard represents a universal character set
- Defines codes for characters used in all major languages
- Used in Windows-XP: each character is encoded as 16 bits
\diamond UTF-8: variable-length encoding used in HTML
- Encodes all Unicode characters
- Uses 1 byte for ASCII, but multiple bytes for other characters
* Null-terminated String
\diamond Array of characters followed by a NULL character

ASCII Codes

The Charcter set of the ASCII Code																
	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	80	SI
1	DLE	DC1	DC2	DC3	DC4	NAR	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US
2	SP	$!$	"	\#	\$	8	5	'	1)	${ }^{*}$	+	,	-	.	/
3	0	1	2	3	4	5	6	7	8	9	:	;	$<$	$=$	$>$?
4	0	A	B	C	D	E	F	G	H	I	J	K	L	M	N	\bigcirc
5	P	Q	R	8	T	U	V	W	X	Y	Z	[\backslash]	^	
6		a	b	c	d	e	f	g	h	i	j	k	1	m	n	\bigcirc
7	p	q	r	3	t	u	v	w	x	Y	z	\{	1	,	\sim	DEL

* Examples:
\diamond ASCII code for space character $=20$ (hex) $=32$ (decimal)
\diamond ASCII code for 'A' = 41 (hex) = 65 (decimal)
\diamond ASCII code for 'a' = 61 (hex) $=97$ (decimal)

Control Characters

* The first 32 characters of ASCII table are used for control

Control character codes = 00 to 1F (hex)

* Examples of Control Characters
\triangleleft Character 0 is the NULL character \Rightarrow used to terminate a string
\diamond Character 9 is the Horizontal Tab (HT) character
\diamond Character 0A (hex) $=10$ (decimal) is the Line Feed (LF)
\diamond Character OD (hex) $=13$ (decimal) is the Carriage Return (CR)
\diamond The LF and CR characters are used together
- They advance the cursor to the beginning of next line
* One control character appears at end of ASCII table
\triangleleft Character 7F (hex) is the Delete (DEL) character

Parity Bit

* Data errors can occur during data transmission or storage/retrieval.
* The 8th bit in the ASCII code is used for error checking.
* This bit is usually referred to as the parity bit.
* There are two ways for error checking:
\diamond Even Parity: Where the 8th bit is set such that the total number of 1 s in the 8 -bit code word is even.
P

0	1	0	0	0	0	0	1

\triangleleft Odd Parity: The 8th bit is set such that the total number of 1 s in the 8 -bit code word is odd.
P

1	1	0	0	0	0	0	1

[^0]: Important skill: Programmers frequently add and subtract the addresses of variables and instructions.

