
Data Representation

COE 205
Computer Organization and Assembly Language

Dr. Aiman El-Maleh

College of Computer Sciences and Engineering
King Fahd University of Petroleum and Minerals

[Adapted from slides of Dr. Kip Irvine: Assembly Language for Intel-Based Computers]

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 2

Overview
Introduction

Numbering Systems

Binary & Hexadecimal Numbers

Base Conversions

Integer Storage Sizes

Binary and Hexadecimal Addition

Signed Integers and 2's Complement Notation

Binary and Hexadecimal subtraction

Carry and Overflow

Character Storage

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 3

Introduction
Computers only deal with binary data (0s and 1s), hence all data
manipulated by computers must be represented in binary format.

Machine instructions manipulate many different forms of data:
Numbers:

Integers: 33, +128, -2827

Real numbers: 1.33, +9.55609, -6.76E12, +4.33E-03

Alphanumeric characters (letters, numbers, signs, control characters):
examples: A, a, c, 1 ,3, ", +, Ctrl, Shift, etc.

Images (still or moving): Usually represented by numbers representing
the Red, Green and Blue (RGB) colors of each pixel in an image,

Sounds: Numbers representing sound amplitudes sampled at a certain
rate (usually 20kHz).

So in general we have two major data types that need to be
represented in computers; numbers and characters.

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 4

Numbering Systems
Numbering systems are characterized by their base
number.

In general a numbering system with a base r will have r
different digits (including the 0) in its number set. These
digits will range from 0 to r-1

The most widely used numbering systems are listed in
the table below:

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 5

Binary Numbers
Each digit (bit) is either 1 or 0

Each bit represents a power of 2

Every binary number is a sum of powers of 2

1 1 1 1 1 1 1 1

27 26 25 24 23 22 21 20

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 6

Converting Binary to Decimal

Weighted positional notation shows how to calculate
the decimal value of each binary bit:

Decimal = (dn-1 × 2n-1) + (dn-2 × 2n-2) + ... + (d1 × 21) + (d0 × 20)

d = binary digit

binary 10101001 = decimal 169:

(1 × 27) + (1 × 25) + (1 × 23) + (1 × 20) = 128+32+8+1=169

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 7

Convert Unsigned Decimal to Binary
Repeatedly divide the decimal integer by 2. Each
remainder is a binary digit in the translated value:

37 = 100101
stop when

quotient is zero

least significant bit

most significant bit

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 8

Another Procedure for Converting from
Decimal to Binary

Start with a binary representation of all 0’s

Determine the highest possible power of two that is less
or equal to the number.

Put a 1 in the bit position corresponding to the highest
power of two found above.

Subtract the highest power of two found above from the
number.

Repeat the process for the remaining number

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 9

Another Procedure for Converting from
Decimal to Binary

Example: Converting 76d to Binary
The highest power of 2 less or equal to 76 is 64, hence the
seventh (MSB) bit is 1

Subtracting 64 from 76 we get 12.

The highest power of 2 less or equal to 12 is 8, hence the fourth
bit position is 1

We subtract 8 from 12 and get 4.

The highest power of 2 less or equal to 4 is 4, hence the third bit
position is 1

Subtracting 4 from 4 yield a zero, hence all the left bits are set to
0 to yield the final answer

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 10

Hexadecimal Integers
Binary values are represented in hexadecimal.

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 11

Converting Binary to Hexadecimal
Each hexadecimal digit corresponds to 4 binary bits.

Example: Translate the binary integer
000101101010011110010100 to hexadecimal

M1023.swf

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 12

Converting Hexadecimal to Binary
Each Hexadecimal digit can be replaced by its 4-bit
binary number to form the binary equivalent.

M1021.swf

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 13

Converting Hexadecimal to Decimal
Multiply each digit by its corresponding power of 16:

Decimal = (d3 × 163) + (d2 × 162) + (d1 × 161) + (d0 × 160)

d = hexadecimal digit

Examples:
Hex 1234 = (1 × 163) + (2 × 162) + (3 × 161) + (4 × 160) =

Decimal 4,660

Hex 3BA4 = (3 × 163) + (11 * 162) + (10 × 161) + (4 × 160) =

Decimal 15,268

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 14

Converting Decimal to Hexadecimal

Decimal 422 = 1A6 hexadecimal

stop when
quotient is zero

least significant digit

most significant digit

Repeatedly divide the decimal integer by 16. Each
remainder is a hex digit in the translated value:

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 15

Integer Storage Sizes
byte

16

8

32

word

doubleword

64quadword

What is the largest unsigned integer that may be stored in 20 bits?

Standard sizes:

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 16

Binary Addition
Start with the least significant bit (rightmost bit)

Add each pair of bits

Include the carry in the addition, if present

0 0 0 0 0 1 1 1

0 0 0 0 0 1 0 0

+

0 0 0 0 1 0 1 1

1

(4)

(7)

(11)

carry:

01234bit position: 567

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 17

Hexadecimal Addition

Divide the sum of two digits by the number base (16).
The quotient becomes the carry value, and the
remainder is the sum digit.

36 28 28 6A
42 45 58 4B
78 6D 80 B5

11

21 / 16 = 1, remainder 5

Important skill: Programmers frequently add and subtract the
addresses of variables and instructions.

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 18

Signed Integers
Several ways to represent a signed number

Sign-Magnitude

1's complement

2's complement

Divide the range of values into 2 equal parts
First part corresponds to the positive numbers (≥ 0)

Second part correspond to the negative numbers (< 0)

Focus will be on the 2's complement representation
Has many advantages over other representations

Used widely in processors to represent signed integers

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 19

Two's Complement Representation

+12612601111110

+2200000010

.

-125511111111

-225411111110

.

-12712910000001

-12812810000000

+12712701111111

+1100000001
0000000000

Signed
value

Unsigned
value

8-bit Binary
value

Positive numbers
Signed value = Unsigned value

Negative numbers
Signed value = Unsigned value - 2n

n = number of bits

Negative weight for MSB
Another way to obtain the signed
value is to assign a negative weight
to most-significant bit

= -128 + 32 + 16 + 4 = -76

1 0 1 1 0 1 0 0

-128 64 32 16 8 4 2 1

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 20

Forming the Two's Complement

Sum of an integer and its 2's complement must be zero:
00100100 + 11011100 = 00000000 (8-bit sum) ⇒ Ignore Carry

The easiest way to obtain the 2's complement of a
binary number is by starting at the LSB, leaving all the

0s unchanged, look for the first occurrence of a 1. Leave
this 1 unchanged and complement all the bits after it.

00100100 = +36starting value

11011011step1: reverse the bits (1's complement)

11011100 = -36sum = 2's complement representation

+ 1step 2: add 1 to the value from step 1

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 21

Sign Bit
Highest bit indicates the sign. 1 = negative, 0 = positive

1 1 1 1 0 1 1 0

0 0 0 0 1 0 1 0

sign bit

Negative

Positive

If highest digit of a hexadecimal is > 7, the value is negative

Examples: 8A and C5 are negative bytes

A21F and 9D03 are negative words

B1C42A00 is a negative double-word

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 22

Sign Extension
Step 1: Move the number into the lower-significant bits

Step 2: Fill all the remaining higher bits with the sign bit

This will ensure that both magnitude and sign are correct

Examples
Sign-Extend 10110011 to 16 bits

Sign-Extend 01100010 to 16 bits

Infinite 0s can be added to the left of a positive number

Infinite 1s can be added to the left of a negative number

10110011 = -77 11111111 10110011 = -77

01100010 = +98 00000000 01100010 = +98

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 23

Two's Complement of a Hexadecimal
To form the two's complement of a hexadecimal

Subtract each hexadecimal digit from 15

Add 1

Examples:
2's complement of 6A3D = 95C3

2's complement of 92F0 = 6D10

2's complement of FFFF = 0001

No need to convert hexadecimal to binary

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 24

Two's Complement of a Hexadecimal
Start at the least significant digit, leaving all the 0s
unchanged, look for the first occurrence of a non-zero
digit.

Subtract this digit from 16.

Then subtract all remaining digits from 15.

Examples:
2's complement of 6A3D = 95C3

2's complement of 92F0 = 6D10

2's complement of FFFF = 0001

F F F 16
- 6 A 3 D

9 5 C 3

F F 16
- 9 2 F 0

6 D 1 0

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 25

Binary Subtraction
When subtracting A – B, convert B to its 2's complement

Add A to (–B)

0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 (2's complement)

0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 (same result)

Carry is ignored, because
Negative number is sign-extended with 1's

You can imagine infinite 1's to the left of a negative number

Adding the carry to the extended 1's produces extended zeros

Practice: Subtract 00100101 from 01101001.

– +

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 26

Hexadecimal Subtraction
When a borrow is required from the digit to the left,
add 16 (decimal) to the current digit's value

Last Carry is ignored

Practice: The address of var1 is 00400B20. The address of the
next variable after var1 is 0040A06C. How many bytes are used
by var1?

C675
A247
242E

-1

-

16 + 5 = 21

C675
5DB9 (2's complement)
242E (same result)

1

+

1

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 27

Ranges of Signed Integers
The unsigned range is divided into two signed ranges for positive
and negative numbers

Practice: What is the range of signed values that may be stored
in 20 bits?

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 28

Carry and Overflow
Carry is important when …

Adding or subtracting unsigned integers

Indicates that the unsigned sum is out of range

Either < 0 or > maximum unsigned n-bit value

Overflow is important when …
Adding or subtracting signed integers

Indicates that the signed sum is out of range

Overflow occurs when
Adding two positive numbers and the sum is negative

Adding two negative numbers and the sum is positive

Can happen because of the fixed number of sum bits

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 29

0 1 0 0 0 0 0 0

0 1 0 0 1 1 1 1
+

1 0 0 0 1 1 1 1

79

64

143
(-113)

Carry = 0 Overflow = 1

1

1 0 0 1 1 1 0 1

1 1 0 1 1 0 1 0
+

0 1 1 1 0 1 1 1

218 (-38)

157 (-99)

119

Carry = 1 Overflow = 1

111

Carry and Overflow Examples
We can have carry without overflow and vice-versa
Four cases are possible

1 1 1 1 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 0 0 1 1 1

15

245 (-8)

7

Carry = 1 Overflow = 0

11111

0 0 0 0 1 0 0 0

0 0 0 0 1 1 1 1
+

0 0 0 1 0 1 1 1

15

8

23

Carry = 0 Overflow = 0

1

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 30

Character Storage
Character sets

Standard ASCII: 7-bit character codes (0 – 127)

Extended ASCII: 8-bit character codes (0 – 255)

Unicode: 16-bit character codes (0 – 65,535)

Unicode standard represents a universal character set
Defines codes for characters used in all major languages

Used in Windows-XP: each character is encoded as 16 bits

UTF-8: variable-length encoding used in HTML
Encodes all Unicode characters

Uses 1 byte for ASCII, but multiple bytes for other characters

Null-terminated String
Array of characters followed by a NULL character

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 31

ASCII Codes

Examples:
ASCII code for space character = 20 (hex) = 32 (decimal)

ASCII code for ‘A' = 41 (hex) = 65 (decimal)

ASCII code for 'a' = 61 (hex) = 97 (decimal)

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 32

Control Characters
The first 32 characters of ASCII table are used for control
Control character codes = 00 to 1F (hex)
Examples of Control Characters

Character 0 is the NULL character ⇒ used to terminate a string
Character 9 is the Horizontal Tab (HT) character
Character 0A (hex) = 10 (decimal) is the Line Feed (LF)
Character 0D (hex) = 13 (decimal) is the Carriage Return (CR)
The LF and CR characters are used together

They advance the cursor to the beginning of next line

One control character appears at end of ASCII table
Character 7F (hex) is the Delete (DEL) character

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 33

Parity Bit
Data errors can occur during data transmission or
storage/retrieval.

The 8th bit in the ASCII code is used for error checking.

This bit is usually referred to as the parity bit.

There are two ways for error checking:
Even Parity: Where the 8th bit is set such that the total number
of 1s in the 8-bit code word is even.

Odd Parity: The 8th bit is set such that the total number of 1s in
the 8-bit code word is odd.

