
COE 205 Lab Manual Lab 1: Assembly Language Tools - page 1

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

Lab 1: Assembly Language Tools and Data Representation

Contents
1.1. Introduction to Assembly Language Tools
1.2. Installing MASM 6.15
1.3. Displaying a Welcome Statement
1.4. Installing the Windows Debugger
1.5. Using the Windows Debugger
1.6. Data Representation

1.1 Introduction to Assembly Language Tools
Software tools are used for editing, assembling, linking, and debugging assembly language
programming. You will need an assembler, a linker, a debugger, and an editor. These tools
are briefly explained below.

1.1.1 Assembler
An assembler is a program that converts source-code programs written in assembly
language into object files in machine language. Popular assemblers have emerged over the
years for the Intel family of processors. These include MASM (Macro Assembler from
Microsoft), TASM (Turbo Assembler from Borland), NASM (Netwide Assembler for both
Windows and Linux), and GNU assembler distributed by the free software foundation. We
will use MASM 6.15.

1.1.2 Linker
A linker is a program that combines your program's object file created by the assembler with
other object files and link libraries, and produces a single executable program. You need a
linker utility to produce executable files. Two linkers: LINK.EXE and LINK32.EXE are
provided with the MASM 6.15 distribution to link 16-bit real-address mode and 32-bit
protected-address mode programs respectively.

We will also use a link library for basic input-output. Two versions of the link library exist
that were originally developed by Kip Irvine. The 32-bit version is called Irvine32.lib and
works in Win32 console mode under MS-Windows, while the 16-bit version is called
Irvine16.lib and works under MS-DOS.

1.1.3 Debugger
A debugger is a program that allows you to trace the execution of a program and examine
the content of registers and memory.

For 16-bit programs, MASM supplies a 16-bit debugger named CodeView. CodeView can be
used to debug only 16-bit programs and is already provided with the MASM 6.15
distribution.
For 32-bit protected-mode programs, you need a 32-bit debugger. The latest version of the
32-bit Windows debugger is available for download for free from Microsoft.

1.1.4 Editor
You need a text editor to create assembly language source files. You can use NotePad , or
any other editor that produces plain ASCII text files. You can also use the ConTEXT editor,
which is distributed as a freeware at http://www.context.cx. ConTEXT is a powerful editor

COE 205 Lab Manual Lab 1: Assembly Language Tools - page 2

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

that can be easily customized and can be used as a programming environment to program in
assembly language. It has built-in syntax highlighting feature.

1.2 Lab Work: Installing MASM 6.15
Step 1: Download MASM615.exe, a self-extract executable file, from
http://www.ccse.kfupm.edu.sa/~mudawar/coe205/lab/index.htm .

Step 2: Double click on MASM615.exe to extract the files. Specify the installation directory.
We recommend using C:\Program Files\MASM615 as the destination directory, but any
other directory will do.

Step 3: Define an environment variable MASMDIR for the installation directory. Under
Control Panel, double-click on System to obtain the System Properties dialog box. Under
System Properties, click on the Advanced tab. Click on the Environment Variables
button.

Under Environment Variables, Click on the New button to add a New System Variable.
Add MASMDIR as the variable name and the C:\Program Files\MASM615 as the variable
value and press OK. The MASMDIR variable and its value should now appear under System
variables. If a different installation directory is chosen for MASM 6.15 then specify it here.

COE 205 Lab Manual Lab 1: Assembly Language Tools - page 3

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

Step 4: Edit the Path system variable by inserting %MASMDIR%; (don't forget the
semicolon) at the beginning of the variable value.

Step 5: Define a new system variable called INCLUDE with value
%MASMDIR%\INCLUDE as show below and press OK. This variable specifies the
directory that contains the include (.inc) files.

Step 6: Define a new system variable called LIB with value %MASMDIR%\LIB as show
below and press OK. This variable specifies the directory that contains the link library (.lib)
files.

Step 7: Check the environment variables. Open a Command Prompt and type:

• SET MASMDIR

• SET INCLUDE

• SET LIB

• PATH

These commands should display the MASMDIR, INCLUDE, LIB, and PATH environment
variables as shown below. If the installation steps are done properly, you can start using the
MASM commands.

COE 205 Lab Manual Lab 1: Assembly Language Tools - page 4

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

1.3 Displaying a Welcome Statement

The first assembly-language program that you will assemble, link, and run is welcome.asm.
This program displays a welcome statement on the screen and terminates. You can open this
program using any text editor. We will not go over the details of this program in this first lab.
You will understand these details in future labs.

TITLE Displaying a Welcoming Message (welcome.asm)

.686
.MODEL flat, stdcall
.STACK

INCLUDE Irvine32.inc

.data

CR EQU 0Dh ; carriage return
LF EQU 0Ah ; line feed

welcome BYTE "Welcome to COE 205",CR,LF
 BYTE "Computer Organization and Assembly Language",CR,LF
 BYTE "Enjoy this course and its lab",CR,LF,0

.code
main PROC
; Clear the screen
 call Clrscr ; Call procedure Clrscr

; Write a null-terminated string to standard output
 lea edx, welcome ; load effective address of welcome into edx
 call WriteString ; write string whose address is in edx
 exit
main ENDP
END main

1.3.1 Lab Work: Assembling and Linking a Program
Open a Command Prompt and type the following command. This command will assemble
and link the welcome.asm program.

make32 welcome

COE 205 Lab Manual Lab 1: Assembly Language Tools - page 5

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

1.3.2 Lab Work: Running a Program
The make32 command will generate is the welcome.exe executable file. You can now run
the welcome.exe program by simply typing welcome at the command prompt. Watch the
output of this program and write it down in the following box:

1.4 Lab Work: Installing the 32-bit Windows Debugger

The latest version of the 32-bit Windows debugger is available for download from Microsoft
at http://www.microsoft.com/whdc/devtools/debugging/installx86.mspx. Alternatively, you
can download version 6.5.3.7 (released on June 2005) from
http://www.ccse.kfupm.edu.sa/~mudawar/coe205/lab/index.htm.
Step 1: Download the 32-bit debugger installer.
Step 2: Double click on the installer executable file and follow the on-screen instructions.
Step 3: Edit the Path system variable by appending the installation directory of the windows
debugger C:\Program Files\Debugging Tools for Windows\ at the end of the Path value.
Don't forget to use the semicolon as a separator between various directories in the Path
system variable.

Step 4: Open a Command Prompt and type: path. This command should display the value of
the path variable. Make sure to have the installation directory of the debugger C:\Program
Files\Debugging Tools for Windows\ as part of the PATH variable.

Console Output

COE 205 Lab Manual Lab 1: Assembly Language Tools - page 6

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

1.5 Lab Work: Using the 32-bit Windows Debugger
We will use the Windows debugger extensively throughout this semester to trace and debug
programs. At the Command Prompt, type: windbg –QY –G welcome.exe to run the
Windows Debugger.

Open the source file welcome.asm from the File menu (or click on the button). Place the
cursor at the beginning of the main procedure and press F7 (or click the button) to start
the execution of the main procedure. Press F10 (or click the button) to step through the
execution of the main procedure. Observe the console output as you step through the
execution.

COE 205 Lab Manual Lab 1: Assembly Language Tools - page 7

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

1.6 Practice: Data Representation

Before going into the details of assembly language programming, it is important that you
master skills and develop fluency about data representation. Computer data can be
represented in a variety of ways. We will examine the content of memory and registers at the
machine level. We will use the binary, decimal, and hexadecimal number systems. Here are
some practice exercises:

1.6.1 Write each of the following Decimal Numbers in Binary:

a) 2 = d) 13 =

b) 7 = e) 27 =

c) 9 = f) 62 =

1.6.2 Write each of the following Binary Numbers in Decimal:

a) 00001010 = d) 01010111 =

b) 00001111 = e) 10000000 =

c) 00101000 = f) 11000111 =

1.6.3 Write each of the following Binary Numbers in Hexadecimal:

a) 00001010 = d) 01010111 =

b) 00001111 = e) 10000000 =

c) 00101000 = f) 11000111 =

1.6.4 Write each of the following Hexadecimal Numbers in Binary:

a) 0B = d) 3D15 =

b) 4C = e) 6E70 =

c) AF = f) 8A9B =

1.6.5 Write each of the following Hexadecimal Numbers in Decimal:

a) 0B = d) 3D15 =

b) 4C = e) 6E70 =

c) AF = f) 8A9B =

1.6.6 Signed Integers: 2’s Complement Notation

In mathematics, the negative of a number n is the value when added to n produces zero. For
example: 3 + (-3) = 0. Programs often include both subtraction and addition operations.
However, the CPU only performs addition internally. When subtracting A – B, the CPU
performs A + (-B). For example, to subtract 6 – 4, the CPU does 6 + (-4).

COE 205 Lab Manual Lab 1: Assembly Language Tools - page 8

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

When working with binary numbers, how does the CPU compute the negative of a number?
The answer is that the CPU computes the 2’s complement. The 2’s complement is the
negative of a number. For example, consider the following 8-bit binary number: 00010110,
which is equal to 22 in decimal. The 2’s complement is obtained by reversing each bit of a
binary number (called the 1’s complement) and then adding 1. For example,

2’s complement of 00010110 = 11101001 (1’s complement) + 1 = 11101010

1.6.7 Write each of the following Integers in 8-bit 2’s Complement Notation:

a) -1 = d) -62 =

b) -17 = e) +127 =

c) -19 = f) -128 =

1.6.8 Write each of the following 8-bit Signed Binary Integers in Decimal:

a) 01011100 = d) 01111110 =

b) 11011100 = e) 10010001 =

c) 10001111 = f) 10000000 =

1.6.9 Indicate the sign for each of the following 16-bit signed hex integers:

a) 7FB9 d) 8123

b) D000 d) 6FFF

1.6.10 Write each of the following signed integers as 16-bit hexadecimal value:

a) -1 = c) -256 =

b) -127 = d) -8193 =

1.6.11 Largest and Smallest

a) What is the largest positive 8-bit value in binary, hexadecimal, and decimal?

b) What is the smallest negative 8-bit value in binary, hexadecimal, and decimal?

c) What is the largest positive 16-bit value in binary, hexadecimal, and decimal?

d) What is the smallest negative 16-bit value in binary, hexadecimal, and decimal?

00010110
11101010 +

00000000 The carry is 1, but it is ignored, since we are representing the number in 8 bits

Since 00010110 in binary = 22 in decimal, then
11101010 in binary = -22 in decimal

COE 205 Lab Manual Lab 1: Assembly Language Tools - page 9

Prepared by Dr. Muhamed Mudawar © KFUPM – Revised August 2006

Review Questions

1. Name four software tools used for assembly language programming:

2. What is an assembler?

3. What is a linker?

4. What is a debugger?

Programming Exercises

1. Modify the welcome.asm program to display a message of your choice.

