
Basic Concepts

COE 205

Computer Organization and Assembly Language

Dr. Aiman El-Maleh

College of Computer Sciences and Engineering

King Fahd University of Petroleum and Minerals

[Adapted from slides of Dr. Kip Irvine: Assembly Language for Intel-Based Computers]

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 2

Outline

Welcome to COE 205

 Assembly-, Machine-, and High-Level Languages

 Assembly Language Programming Tools

 Programmer’s View of a Computer System

 Basic Computer Organization

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 3

Welcome to COE 205

 Assembly language programming

 Basics of computer organization

 CPU design

 Software Tools

 Microsoft Macro Assembler (MASM) version 6.15

 Link Libraries provided by Author (Irvine32.lib and Irivine16.lib)

 Microsoft Windows debugger

 ConTEXT Editor

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 4

Textbook

 Kip Irvine: Assembly Language for Intel-Based

Computers

 4th edition (2003)

 5th edition (2007)

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 5

Course Objectives
After successfully completing the course, students will be able to:

 Describe the basic components of a computer system, its instruction

set architecture and its basic fetch-execute cycle operation.

 Describe how data is represented in a computer and recognize

when overflow occurs.

 Recognize the basics of assembly language programming including

addressing modes.

 Analyze, design, implement, and test assembly language programs.

 Recognize, analyze, and design the basic components of a simple

CPU including datapath and control unit design alternatives.

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 6

Course Learning Outcomes

 Ability to analyze, design, implement, and test assembly

language programs.

 Ability to use tools and skills in analyzing and debugging

assembly language programs.

 Ability to design the datapath and control unit of a simple

CPU.

 Ability to demonstrate self-learning capability.

 Ability to work in a team.

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 7

Required Background

 The student should already be able to program

confidently in at least one high-level programming

language, such as Java or C.

 Prerequisite

 COE 202: Fundamentals of computer engineering

 ICS 102: Introduction to computing

 Only students with computer engineering major should

be registered in this course.

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 8

Grading Policy
 Discussions & Reflections 5%

 Programming Assignments 10%

 Quizzes 10%

 Exam I 15% (Sun. March 28, 2010)

 Exam II 20% (Th. May 20, 2010)

 Laboratory 20%

 Final 20%

 Attendance will be taken regularly.

 Excuses for officially authorized absences must be presented no later
than one week following resumption of class attendance.

 Late assignments will be accepted but you will be penalized 10% per
each late day.

 A student caught cheating in any of the assignments will get 0 out of
10%.

 No makeup will be made for missing Quizzes or Exams.

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 9

Course Topics
 Introduction and Information Representation: 7 lectures

Introduction to computer organization. Instruction Set Architecture.

Computer Components. Fetch-Execute cycle. Signed number

representation ranges. Overflow.

 Assembly Language Concepts: 7 lectures

Assembly language format. Directives vs. instructions. Constants

and variables. I/O. INT 21H. Addressing modes.

 8086 Assembly Language Programming: 19 lectures

Register set. Memory segmentation. MOV instructions. Arithmetic

instructions and flags (ADD, ADC, SUB, SBB, INC, DEC, MUL,

IMUL, DIV, IDIV). Compare, Jump and loop (CMP, JMP, Cond.

jumps, LOOP). Logic, shift and rotate. Stack operations.

Subprograms. Macros. I/O (IN, OUT). String instructions. Interrupts

and interrupt processing, INT and IRET.

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 10

Course Topics
 CPU Design: 12 lectures

Register transfer. Data-path design. 1-bus, 2-bus and 3-bus CPU

organization. Fetch and execute phases of instruction processing.

Performance consideration. Control steps. CPU-Memory interface

circuit. Hardwired control unit design. Microprogramming.

Horizontal and Vertical microprogramming. Microprogrammed

control unit design.

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 11

Next …

Welcome to COE 205

 Assembly-, Machine-, and High-Level Languages

 Assembly Language Programming Tools

 Programmer’s View of a Computer System

 Basic Computer Organization

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 12

Some Important Questions to Ask

What is Assembly Language?

Why Learn Assembly Language?

What is Machine Language?

 How is Assembly related to Machine Language?

What is an Assembler?

 How is Assembly related to High-Level Language?

 Is Assembly Language portable?

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 13

A Hierarchy of Languages

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 14

Assembly and Machine Language
 Machine language

 Native to a processor: executed directly by hardware

 Instructions consist of binary code: 1s and 0s

 Assembly language

 A programming language that uses symbolic names to represent

operations, registers and memory locations.

 Slightly higher-level language

 Readability of instructions is better than machine language

 One-to-one correspondence with machine language instructions

 Assemblers translate assembly to machine code

 Compilers translate high-level programs to machine code

 Either directly, or

 Indirectly via an assembler

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 15

Compiler and Assembler

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 16

Instructions and Machine Language

 Each command of a program is called an instruction (it

instructs the computer what to do).

 Computers only deal with binary data, hence the

instructions must be in binary format (0s and 1s) .

 The set of all instructions (in binary form) makes up the

computer's machine language. This is also referred to as

the instruction set.

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 17

Instruction Fields

Machine language instructions usually are made up of

several fields. Each field specifies different information

for the computer. The major two fields are:

 Opcode field which stands for operation code and it

specifies the particular operation that is to be performed.

 Each operation has its unique opcode.

 Operands fields which specify where to get the source

and destination operands for the operation specified by

the opcode.

 The source/destination of operands can be a constant, the

memory or one of the general-purpose registers.

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 18

Assembly vs. Machine Code

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 19

Translating Languages

English: D is assigned the sum of A times B plus 10.

High-Level Language: D = A * B + 10

Intel Assembly Language:

mov eax, A

mul B

add eax, 10

mov D, eax

Intel Machine Language:

A1 00404000

F7 25 00404004

83 C0 0A

A3 00404008

A statement in a high-level language is translated

typically into several machine-level instructions

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 20

Mapping Between Assembly Language
and HLL

 Translating HLL programs to machine language

programs is not a one-to-one mapping

 A HLL instruction (usually called a statement) will be

translated to one or more machine language instructions

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 21

Advantages of High-Level Languages

 Program development is faster

 High-level statements: fewer instructions to code

 Program maintenance is easier

 For the same above reasons

 Programs are portable

 Contain few machine-dependent details

 Can be used with little or no modifications on different machines

 Compiler translates to the target machine language

 However, Assembly language programs are not portable

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 22

Why Learn Assembly Language?
 Accessibility to system hardware

 Assembly Language is useful for implementing system software

 Also useful for small embedded system applications

 Space and Time efficiency

 Understanding sources of program inefficiency

 Tuning program performance

 Writing compact code

 Writing assembly programs gives the computer designer the needed

deep understanding of the instruction set and how to design one

 To be able to write compilers for HLLs, we need to be expert with

the machine language. Assembly programming provides this

experience

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 23

Assembly vs. High-Level Languages

Some representative types of applications:

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 24

Next …

Welcome to COE 205

 Assembly-, Machine-, and High-Level Languages

 Assembly Language Programming Tools

 Programmer’s View of a Computer System

 Basic Computer Organization

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 25

Assembler

 Software tools are needed for editing, assembling,

linking, and debugging assembly language programs

 An assembler is a program that converts source-code

programs written in assembly language into object files

in machine language

 Popular assemblers have emerged over the years for the

Intel family of processors. These include …

 TASM (Turbo Assembler from Borland)

 NASM (Netwide Assembler for both Windows and Linux), and

 GNU assembler distributed by the free software foundation

We will use MASM (Macro Assembler from Microsoft)

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 26

Linker and Link Libraries

 You need a linker program to produce executable files

 It combines your program's object file created by the

assembler with other object files and link libraries, and

produces a single executable program

 LINK32.EXE is the linker program provided with the

MASM distribution for linking 32-bit programs

We will also use a link library for input and output

 Called Irvine32.lib developed by Kip Irvine

 Works in Win32 console mode under MS-Windows

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 27

Assemble and Link Process

Source

File

Source

File

Source

File

Assembler
Object

File

Assembler
Object

File

Assembler
Object

File

Linker
Executable

File

Link

Libraries

A project may consist of multiple source files

Assembler translates each source file separately into an object file

Linker links all object files together with link libraries

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 28

Debugger

 Allows you to trace the execution of a program

 Allows you to view code, memory, registers, etc.

We will use the 32-bit Windows debugger

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 29

Editor

 Allows you to create assembly language source files

 Some editors provide syntax highlighting features and

can be customized as a programming environment

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 30

Next …

Welcome to COE 205

 Assembly-, Machine-, and High-Level Languages

 Assembly Language Programming Tools

 Programmer’s View of a Computer System

 Basic Computer Organization

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 31

Programmer’s View of a Computer System

Application Programs

High-Level Language

Assembly Language

Operating System

Instruction Set

Architecture

Microarchitecture

Digital Logic
Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Increased level

of abstraction

Each level

hides the

details of the

level below it

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 32

Programmer's View – 2

 Application Programs (Level 5)

 Written in high-level programming languages

 Such as Java, C++, Pascal, Visual Basic . . .

 Programs compile into assembly language level (Level 4)

 Assembly Language (Level 4)

 Instruction mnemonics are used

 Have one-to-one correspondence to machine language

 Calls functions written at the operating system level (Level 3)

 Programs are translated into machine language (Level 2)

 Operating System (Level 3)

 Provides services to level 4 and 5 programs

 Translated to run at the machine instruction level (Level 2)

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 33

Programmer's View – 3

 Instruction Set Architecture (Level 2)

 Specifies how a processor functions

 Machine instructions, registers, and memory are exposed

 Machine language is executed by Level 1 (microarchitecture)

Microarchitecture (Level 1)

 Controls the execution of machine instructions (Level 2)

 Implemented by digital logic (Level 0)

 Digital Logic (Level 0)

 Implements the microarchitecture

 Uses digital logic gates

 Logic gates are implemented using transistors

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 34

Instruction Set Architecture (ISA)

 Collection of assembly/machine instruction set of the

machine

Machine resources that can be managed with these

instructions

 Memory

 Programmer-accessible registers.

 Provides a hardware/software interface

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 35

Instruction Set Architecture (ISA)

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 36

Next …

Welcome to COE 205

 Assembly-, Machine-, and High-Level Languages

 Assembly Language Programming Tools

 Programmer’s View of a Computer System

 Basic Computer Organization

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 37

Basic Computer Organization

 Since the 1940's, computers have 3 classic components:

 Processor, called also the CPU (Central Processing Unit)

 Memory and Storage Devices

 I/O Devices

 Interconnected with one or more buses

 Bus consists of

 Data Bus

 Address Bus

 Control Bus

Processor

(CPU)
Memory

registers

ALU clock

I/O

Device

#1

I/O

Device

#2

data bus

control bus

address bus

CU

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 38

 Processor consists of

 Datapath

 ALU

 Registers

 Control unit

 ALU

 Performs arithmetic

and logic instructions

 Control unit (CU)

 Generates the control signals required to execute instructions

 Implementation varies from one processor to another

Processor (CPU)

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 39

 Synchronizes Processor and Bus operations

 Clock cycle = Clock period = 1 / Clock rate

 Clock rate = Clock frequency = Cycles per second

 1 Hz = 1 cycle/sec 1 KHz = 103 cycles/sec

 1 MHz = 106 cycles/sec 1 GHz = 109 cycles/sec

 2 GHz clock has a cycle time = 1/(2×109) = 0.5 nanosecond (ns)

 Clock cycles measure the execution of instructions

Clock

Cycle 1 Cycle 2 Cycle 3

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 40

Memory

 Ordered sequence of bytes

 The sequence number is called the memory address

 Byte addressable memory

 Each byte has a unique address

 Supported by almost all processors

 Physical address space

 Determined by the address bus width

 Pentium has a 32-bit address bus

 Physical address space = 4GB = 232 bytes

 Itanium with a 64-bit address bus can support

 Up to 264 bytes of physical address space

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 41

Address Space

Address Space is

the set of memory

locations (bytes) that

can be addressed

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 42

CPU Memory Interface
 Address Bus

 Memory address is put on address bus

 If memory address = m bits then 2
m

locations are addressed

 Data Bus: b-bit bi-directional bus

 Data can be transferred in both directions on the data bus

 Note that b is not necessary equal to w or s. So data transfers
might take more than a single cycle (if w > b) .

 Control Bus

 Signals control

transfer of data

 Read request

 Write request

 Complete transfer

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 43

Memory Devices
 Random-Access Memory (RAM)

 Usually called the main memory

 It can be read and written to

 It does not store information permanently (Volatile , when it is powered
off, the stored information are gone)

 Information stored in it can be accessed in any order at equal time
periods (hence the name random access)

 Information is accessed by an address that specifies the exact location
of the piece of information in the RAM.

 DRAM = Dynamic RAM

 1-Transistor cell + trench capacitor

 Dense but slow, must be refreshed

 Typical choice for main memory

 SRAM: Static RAM

 6-Transistor cell, faster but less dense than DRAM

 Typical choice for cache memory

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 44

Memory Devices

 ROM (Read-Only-Memory)

 A read-only-memory, non-volatile i.e. stores information

permanently

 Has random access of stored information

 Used to store the information required to startup the computer

 Many types: ROM, EPROM, EEPROM, and FLASH

 FLASH memory can be erased electrically in blocks

 Cache

 A very fast type of RAM that is used to store information that is

most frequently or recently used by the computer

 Recent computers have 2-levels of cache; the first level is faster

but smaller in size (usually called internal cache), and the

second level is slower but larger in size (external cache).

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 45

Processor-Memory Performance Gap

 1980 – No cache in microprocessor

 1995 – Two-level cache on microprocessor

CPU: 55% per year

DRAM: 7% per year
1

10

100

1000
1

9
8

0

1
9

8
1

1
9

8
3

1
9

8
4

1
9
8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

1
9

8
2

Processor-Memory

Performance Gap:

(grows 50% per year)

P
e
rf

o
rm

a
n
c
e

“Moore’s Law”

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 46

The Need for a Memory Hierarchy

Widening speed gap between CPU and main memory

 Processor operation takes less than 1 ns

 Main memory requires more than 50 ns to access

 Each instruction involves at least one memory access

 One memory access to fetch the instruction

 Additional memory accesses for instructions involving memory

data access

Memory bandwidth limits the instruction execution rate

 Cache memory can help bridge the CPU-memory gap

 Cache memory is small in size but fast

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 47

Typical Memory Hierarchy

 Registers are at the top of the hierarchy

 Typical size < 1 KB

 Access time < 0.5 ns

 Level 1 Cache (8 – 64 KB)

 Access time: 0.5 – 1 ns

 L2 Cache (512KB – 8MB)

 Access time: 2 – 10 ns

Main Memory (1 – 2 GB)

 Access time: 50 – 70 ns

 Disk Storage (> 200 GB)

 Access time: milliseconds

Microprocessor

Registers

L1 Cache

L2 Cache

Memory

Disk, Tape, etc

Memory Bus

I/O Bus

F
a
s
te

r

B
ig

g
e
r

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 48

Magnetic Disk Storage

Track 0
Track 1

Sector

Recording area

Spindle

Direction of

rotation

Platter

Read/write head

Actuator

Arm

Track 2

Disk Access Time =

Seek Time +

Rotation Latency +

Transfer Time

Seek Time: head movement to the

desired track (milliseconds)

Rotation Latency: disk rotation until

desired sector arrives under the head

Transfer Time: to transfer data

Basic Concepts COE 205 – Computer Organization and Assembly Language – KFUPM slide 49

Example on Disk Access Time

 Given a magnetic disk with the following properties

 Rotation speed = 7200 RPM (rotations per minute)

 Average seek = 8 ms, Sector = 512 bytes, Track = 200 sectors

 Calculate

 Time of one rotation (in milliseconds)

 Average time to access a block of 32 consecutive sectors

 Answer

 Rotations per second

 Rotation time in milliseconds

 Average rotational latency

 Time to transfer 32 sectors

 Average access time

= 7200/60 = 120 RPS

= 1000/120 = 8.33 ms

= time of half rotation = 4.17 ms

= (32/200) * 8.33 = 1.33 ms

= 8 + 4.17 + 1.33 = 13.5 ms

