Q1. The melting and boiling points in a newly devised thermometer are $0^{\circ} \mathrm{X}$ and $100^{\circ} \mathrm{X}$ which are equivalent to $-45^{\circ} \mathrm{C}$ and $115^{\circ} \mathrm{C}$ respectively in Celsius scale. What is a temperature reading of $86^{\circ} \mathrm{X}$ in ${ }^{\circ} \mathrm{C}$ in this thermometer?
A) $93^{\circ} \mathrm{C}$
B) $54^{\circ} \mathrm{C}$
C) $75^{\circ} \mathrm{C}$
D) $86^{\circ} \mathrm{C}$
E) $134^{\circ} \mathrm{C}$

Sec\# 1-4
Grade\# 60
Q2. Which one of the following is an example of a physical change?
A) Lead becomes a liquid when heated to $601^{\circ} \mathrm{C}$.
B) Corrosiveness of sulfuric acid.
C) Burning wood in air.
D) Gasoline combustion in the car's engine.
E) Neutralization of stomach acid with an antacid

Sec\# 1-1
Grade\# 75
Q3. ${ }^{40} \mathrm{Ca}^{2+}$ and ${ }^{31} \mathrm{P}^{3-}$ species have the same, 20 15
A) number of electrons.
B) number of protons.
C) number of neutron.
D) net charge.
E) atomic mass.

Sec\# 2-5
Grade\# 75
Q4. The correct name for the compound $\mathrm{HNO}_{2}$ is
A) Nitrous acid
B) Nitric acid
C) Hydronitronic acid
D) Hydrogen nitrite
E) Hydronitrous acid

Sec\# 2-8

Grade\# 75
Q5. A compound of only titanium(Ti) and oxygen(O) contains $59.9 \%$ of Ti by mass. What is the empirical formula of this compound?
A) $\mathrm{TiO}_{2}$
B) TiO
C) $\mathrm{Ti}_{2} \mathrm{O}_{3}$
D) $\mathrm{TiO}_{4}$
E) $\mathrm{Ti}_{2} \mathrm{O}$

Sec\# 3-5
Grade\# 70
Q6. How many atoms of carbon are present in 0.50 g of $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ ?
A) $1.1 \times 10^{22}$ atoms
B) $2.1 \times 10^{22}$ atoms
C) 6 atoms
D) $6.0 \times 10^{23}$ atoms
E) $8.8 \times 10^{20}$ atoms

Sec\# 3-3
Grade\# 50
Q7. Maleic acid is an organic compound of $41.39 \% \mathrm{C}, 3.47 \% \mathrm{H}$ and the rest is oxygen. If 0.129 mol of maleic acid has a mass of 15.0 g , what is the molecular formula of maleic acid?
A) $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$
B) CHO
C) $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
D) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
E) $\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{2}$

Sec\# 3-5
Grade\# 50
Q8. What volume of 0.0200 M calcium hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$, is required to neutralize 35.00 mL of 0.0500 M nitric acid, $\mathrm{HNO}_{3}$ ?
A) 43.8 mL
B) 32.5 mL
C) 175 mL
D) 125 mL
E) 75.3 mL

Sec\# 4-8
Grade\# 70
Q9. The spectator ions in the reaction between aqueous perchloric acid, $\mathrm{HClO}_{4}$ and aqueous barium hydroxide, $\mathrm{Ba}(\mathrm{OH})_{2}$, are $\qquad$ . (Note: This is an acid-base reaction).
A) $\mathrm{ClO}_{4}^{-}$and $\mathrm{Ba}^{2+}$
B) $\mathrm{OH}^{-}$and $\mathrm{ClO}_{4}^{-}$
C) $\mathrm{H}^{+}, \mathrm{OH}^{-}, \mathrm{ClO}_{4}^{-}$, and $\mathrm{Ba}^{2+}$
D) $\mathrm{H}^{+}$and $\mathrm{OH}^{-}$
E) $\mathrm{H}^{+}$and $\mathrm{Ba}^{2+}$

Sec\# 4-4
Grade\# 70
Q10. What is the oxidation state of S in $\mathrm{MgSO}_{3}$ ?
A) +4
B) +2
C) 0
D) -2
E) -4

Sec\# 4-9
Grade\# 70
Q11. What volume is occupied by 2.0 g of He at $25^{\circ} \mathrm{C}$ and a pressure of 775 mm Hg ?
A) 12 L
B) 24 L
C) 6.3 L
D) 54 L
E) 7.5 L

Sec\# 5-3
Grade\# 70

Q12.Which one of the following properties of a gas is not correct?
A) Density for the gaseous state is larger (or greater) than that of its liquid state.
B) Density varies with temperature.
C) It takes the shape and volume of its container.
D) It is compressible.
E) It forms homogeneous mixtures with one another.

Sec\# 5-2
Grade\# 75
Q13. The density of a gas measured at 751 mmHg and at $27^{\circ} \mathrm{C}$, was found to be $1.05 \mathrm{~g} / \mathrm{L}$. What is the molar mass of the gas?
A) $26.2 \mathrm{~g} / \mathrm{mol}$
B) $0.0343 \mathrm{~g} / \mathrm{mol}$
C) $202 \mathrm{~g} / \mathrm{mol}$
D) $85.1 \mathrm{~g} / \mathrm{mol}$
E) $602 \mathrm{~g} / \mathrm{mol}$

Sec\# 5-4
Grade\# 75
Q14. Consider a mixture of air and gasoline vapor in a cylinder with a piston. The original volume is $40 . \mathrm{cm}^{3}$. If the combustion of this mixture releases 950 J of energy, to what volume will the gases expand against a constant pressure of 650 torr if all the energy of combustion is converted into work to push the piston? ( $1 \mathrm{~L} \cdot \mathrm{~atm}=101.3 \mathrm{~J}$ )
A) 11 L
B) 27 L
C) 8.3 L
D) 34 L
E) 1.8 L

Sec\# 6-1
Grade\# 60
Q15. The chemical reaction below is the oxidation of hydroquinione by hydrogen peroxide to produce quinone and water as follows:
$\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Calculate $\Delta \mathrm{H}$ for this reaction from the following data:

$$
\begin{array}{ll}
\mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=+177.4 \mathrm{~kJ} \\
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) & \Delta \mathrm{H}=-191.2 \mathrm{~kJ} \\
\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}=-241.8 \mathrm{~kJ}
\end{array}
$$

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
\Delta \mathrm{H}=-43.8 \mathrm{~kJ}
$$

A) -202.6 kJ
B) +327.4 kJ
C) -1402.8 kJ
D) +1089.0 kJ
E) -2504.1 kJ

Sec\# 6-3
Grade\# 60
Q16. In the Periodic Table, the lightest atom having the ground state electron configuration $n s^{2}(n-1) d^{8}$ would be found in:
A) Period 4
B) Group IIA
C) Period 8
D) Period 6
E) Lanthanide series

Sec\# 7-11
Grade\# 70

Q17. Which one of the following statements is False?
A) The exact location and momentum of an electron can be determined simultaneously.
B) All matter display both particle and wavelike characteristics.
C) Ni has two unpaired electrons in its 3d orbital.
D) No two electrons in an atom can have the same four quantum numbers.
E) The frequency and wavelength of electromagnetic radiation are inversely proportional to each other.

Sec\# 7-2
Grade\# 70

Q18. Consider the following molecular formulas:



Which one of the following statements is true?
A) The electrons in each molecule tend to orient themselves around the most electronegative element.
B) Only $\mathrm{CO}_{2}$ molecules will form hydrogen bond with each other.
C) Both HF and $\mathrm{CO}_{2}$ are linear molecules and therefore nonpolar.
D) The bond angles of $\mathrm{NH}_{3}$ are exactly $109.5^{\circ}$.
E) The hybridization of N atom in $\mathrm{NH}_{3}$ molecule is $\mathrm{sp}^{2}$.

Sec\# 8-10
Grade\# 70

Q19. Which one of the following compounds contains only one unshared pair of valence electrons on the central atom (as indicated by the underlined atom) in the Lewis structure?
A) $\mathrm{SeO}_{2}$
B) $\mathrm{H}_{2} \underline{\mathrm{O}}$
C) $\mathrm{CH}_{4}$
D) $\mathrm{SO}_{3}$
E) $\mathrm{OCl}_{2}$

Sec\# 8-9
Grade\# 75

Q20. Consider the following ionic substances and arrange them in the order of decreasing lattice energy NaI, KI, LiCl, LiI
A) $\mathrm{LiCl}>\mathrm{LiI}>\mathrm{NaI}>\mathrm{KI}$
B) $\mathrm{NaI}>\mathrm{KI}>\mathrm{LiCl}>\mathrm{LiI}$
C) $\mathrm{KI}>\mathrm{NaI}>\mathrm{LiCl}>$ LiI
D) $\mathrm{LiCl}>\mathrm{KI}>\mathrm{NaI}>$ LiI
E) $\mathrm{LiI}>\mathrm{NaI}>\mathrm{KI}>\mathrm{LiCl}$

Sec\# 8-5
Grade\# 70
Q21. The hybridization of the tellurium atom in $\mathrm{TeF}_{2}$ is
A) $s p^{3}$
B) $d s p^{3}$
C) $d^{2} s p^{3}$
D) $s p^{2}$
E) $s p$

Sec\# 9-1
Grade\# 70
Q22. The angle formed by the carbon atoms labeled with stars (*) in $\mathrm{CH}_{2}=\mathrm{CH}-{ }^{*} \mathrm{CH}={ }^{*} \mathrm{CH}-{ }^{*} \mathrm{CH}=\mathrm{CH}_{2}$ is nearly:
A) $120^{\circ}$
B) $180^{\circ}$
C) $90^{\circ}$
D) $109^{\circ}$
E) $104^{\circ}$

## Sec\# 9-1

Grade\# 50
Q23. Consider the molecule


What is the hybridization of the oxygen atom?
A) $\mathrm{sp}^{2}$
B) sp
C) $\mathrm{sp}^{3}$
D) $\mathrm{dsp}^{3}$
E) $d^{2} \mathrm{sp}^{3}$

Sec\# 9-2
Grade\# 60
Q24. Which one of the following diatomic species would become more stable when one electron is removed from its orbitals?
A) $F_{2}$
B) $\mathrm{CO}^{+}$
C) $\mathrm{N}_{2}$
D) $\mathrm{B}_{2}{ }^{+}$
E) $\mathrm{NO}^{+}$

Q25. Which one of the following statements about the molecule BN is False?
A) It is paramagnetic.
B) Its bond order is 2 .
C) The total number of valence electrons are 8 .
D) It has one sigma bond.
E) Its $\pi_{2 p}$ orbital has paired electrons.

Sec\# 9-3
Grade\# 80
Q26. Consider the benzene molecule. Which one of the following statements about the molecule is False?
A) The sigma ( $\sigma$ ) bonds of carbon atoms are delocalized.
B) All six C - C bonds are known to be equivalent.
C) Each carbon atom is $\mathrm{sp}^{2}$ hybridized.
D) The localized electron model must consider resonance to account for the six equal C-C bonds.
E) The pi $(\pi)$ bonding in the molecule is delocalized.

Sec\# 9-5
Grade\# 75
Q27. Palladium crystallizes in a face-centered cubic unit cell. Its density is $12.0 \mathrm{~g} / \mathrm{cm}^{3}$ at $27^{\circ} \mathrm{C}$. Calculate the atomic radius of Pd .
A) 138 pm
B) $1.95 \times 10^{-8} \mathrm{~nm}$
C) $1.95 \times 10^{-8} \mathrm{~cm}$
D) 154 pm
E) 0.109 nm

Sec\# 10-3
Grade\# 75
Q28. Osmium tetraoxide, $\mathrm{OsO}_{4}$, is a soft crystal that melts at $40^{\circ} \mathrm{C}$. The liquid does not conduct electricity. What kind of crystal is this?
A) Molecular crystal
B) Atomic crystal
C) Ionic crystal
D) Metallic crystal
E) Solid crystal

Sec\# 10-5
Grade\# 75
Q29. A crystal was analyzed by X-Ray of wavelength 2.47 Angstroms ( $\AA$ ) and the angle of diffraction was 16.32 degrees. The crystal edge (d) for the first order ( $\mathrm{n}=1$ ) diffractions in Angstroms is:
A) 4.40
B) 16.32
C) 2.42
D) 1
E) 2.47

Sec\# 10-3
Grade\# 75
Q30. The heat of vaporization of carbon disulfide is $26.74 \mathrm{~kJ} / \mathrm{mol}$, and its normal boiling point is $46.0^{\circ} \mathrm{C}$. What is the vapor pressure of $\mathrm{CS}_{2}$ at $0.0^{\circ} \mathrm{C}$ ?
A) 139 torr
B) 447 torr
C) 313 torr
D) 5.47 torr
E) 4160 torr

Sec\# 10-8
Grade\# 75
Q31. At which one of the following conditions $\mathrm{CO}_{2}$ will be a gas? Given that the triple point of carbon dioxide occurs at $-56.6^{\circ} \mathrm{C}$ and 5.1 atm .
A) 0.5 atm and $-20^{\circ} \mathrm{C}$
B) 7 atm and $-40^{\circ} \mathrm{C}$
C) 5 atm and $-60^{\circ} \mathrm{C}$
D) 10 atm and $-100^{\circ} \mathrm{C}$
E) 15 atm and $-40^{\circ} \mathrm{C}$

Sec\# 10-9
Grade\# 70
Q32. Which one of the following substances will have both dispersion forces and dipoledipole forces between molecules?
A) HCl
B) $\mathrm{BCl}_{3}$
C) $\mathrm{Br}_{2}$
D) $\mathrm{H}_{2}$
E) $\mathrm{CO}_{2}$

Sec\# 10-1
Grade\# 75

Q33. Which one of the following liquids would have the highest viscosity at $25^{\circ} \mathrm{C}$ ?
A) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
B) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
C) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
D) $\mathrm{CH}_{3} \mathrm{Br}$
E) $\mathrm{CH}_{3} \mathrm{OCH}_{3}$

Sec\# 10-2
Grade\# 75
Q34. An aqueous solution is $16.0 \% \mathrm{HNO}_{3}$ by mass. What is the molality (m) of this solution?
A) 3.02 m
B) 7.23 m
C) 2.05 m
D) 1.22 m
E) 1.03 m

Sec\# 11-1
Grade\# 75
Q35. Which one of the following solvents is most appropriate to dissolve HF gas?
A) $\mathrm{CH}_{3} \mathrm{OH}$
B) $\mathrm{CCl}_{4}$
C) $\mathrm{C}_{6} \mathrm{H}_{6}$
D) $\mathrm{CBr}_{4}$
E) $\mathrm{CS}_{2}$

Sec\# 11-2
Grade\# 70
Q36. The partial pressure of $\mathrm{O}_{2}$ in air at sea level is 0.21 atm . Determine the concentration of $\mathrm{O}_{2}$ in the surface of water of a lake at $20^{\circ} \mathrm{C}$. The Henry's law constant of $\mathrm{O}_{2}$ under these conditions is $1.38 \times 10^{-3} \mathrm{~mol} /(\mathrm{L} \cdot \mathrm{atm})$.
A) $2.9 \times 10^{-4} \mathrm{M}$
B) $3.5 \times 10^{-4} \mathrm{M}$
C) $7.1 \times 10^{-3} \mathrm{M}$
D) $4.6 \times 10^{-4} \mathrm{M}$
E) $6.5 \times 10^{-6} \mathrm{M}$

## Sec\# 11-3

Grade\# 70
Q37. Calculate the vapor pressure at $25^{\circ} \mathrm{C}$ of a solution containing 99.5 g of a substance (molar mass $=342.30 \mathrm{~g} / \mathrm{mol}$ ) and 300 mL of water. The vapor pressure of pure water at 25 ${ }^{\circ} \mathrm{C}$ is 23.8 torr. Assume the density of water to be $1.00 \mathrm{~g} / \mathrm{mL}$.
A) 23.4 torr
B) 23.6 torr
C) 23.2 torr
D) 24.2 torr
E) 24.6 torr

Sec\# 11-4
Grade\# 65
Q38. How much ethylene glycol (molar mass $=62.07 \mathrm{~g} / \mathrm{mol}$ ), must be added to 1.0 kg of water to produce a solution that boils at $105.0^{\circ} \mathrm{C}$ ? ( $\mathrm{K}_{\mathrm{b}}$ for water $=0.512{ }^{\circ} \mathrm{C} / \mathrm{m}$ )
A) $6.1 \times 10^{2} \mathrm{~g}$
B) $9.8 \times 10^{2} \mathrm{~g}$
C) 45 g
D) 72 g
E) $3.2 \times 10^{2} \mathrm{~g}$

Sec\# 11-4
Grade\# 65

Q39. The osmotic pressure of a solution of 0.050 g of hemoglobin in 10.0 mL of aqueous solution is $1.8 \times 10^{-3} \mathrm{~atm}$ at $25^{\circ} \mathrm{C}$. What is the molar mass of hemoglobin?
A) $6.8 \times 10^{4} \mathrm{~g} / \mathrm{mol}$
B) $6.8 \times 10^{3} \mathrm{~g} / \mathrm{mol}$
C) $4.2 \times 10^{3} \mathrm{~g} / \mathrm{mol}$
D) $8.6 \times 10^{4} \mathrm{~g} / \mathrm{mol}$
E) $4.2 \times 10^{4} \mathrm{~g} / \mathrm{mol}$

Sec\# 11-6
Grade\# 70

Q40. A solution of 3.81 g of $\mathrm{MgCl}_{2}$ in 400.0 g of water freezes at $-0.497^{\circ} \mathrm{C}$. The $\mathrm{K}_{\mathrm{f}}$ of water is $1.86^{\circ} \mathrm{C} / \mathrm{m}$. What is the van't Hoff factor, $i$, for this solution?
A) 2.67
B) 2.78
C) 2.35
D) 3.00
E) 2.49

Sec\# 11-7
Grade\# 70

