

- Properties and measurements of gases.
- Effects of temperature, pressure and volume.

- Boyle's law.
- Charles's law, and
- Avogadro's law.
- The ideal gas equation.
- Gas mixtures and partial pressure.
- The Kinetic Molecular Theory.
- Real gases.

Chapter 11 Section 1
States of Matter

How do the three phases vary from each other at molecular levels?

Unlike liquid and solid, gas fills up the container and exerts force towards the inner walls of the container.

Gaseous Elements

- Few elements and many low molar masses molecular compounds do exist as gases at room temperature.

н

Chapter 11 Section 1

Gaseous Compounds

- Few elements and many low molar masses molecular compounds do exist as gases at room temperature.

TABLE 11.1 \quad Molecular Compounds That Are Gases at Room Temperature

Molecular Formula
HCl
NH_{3}
CO_{2}
$\mathrm{N}_{2} \mathrm{O}$
CH_{4}
HCN

Compound Name
Hydrogen chloride
Ammonia
Carbon dioxide
Dinitrogen monoxide or nitrous oxide
Methane
Hydrogen cyanide

Chapter 11 Section 1

Characteristics of Gases

- The gas is different from condensed phases (liquid and solid) in many ways:

1. It assumes both the shape and volume of its container.
2. It is compressible.
3. It has a lower density compared to liquid and solid.
4. It forms homogeneous mixtures with other gases (that it doesn't
 react with) in any proportions "miscibility".

How Powerful the Gas is?

- A sample of a gas confined to a container exerts a pressure on its walls. An example is the tire of a car.

An empty
metal can

Air inside the can is removed

Atmospheric pressure crashes the can

[^0]Chapter 11 Section 1

Definition of Pressure

- Pressure is defined as the force applied per unit area
- $\mathrm{P}=\frac{\text { Force }}{\text { Area }}=\frac{\text { Newton }}{\mathrm{m}^{2}}$
- $1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$

- 1 pascal $(\mathbf{P a})=1 \mathrm{~N} / \mathrm{m}^{2} \quad$ (SI unit)
- Other commonly used units to express gas pressures:
- Atmosphere (atm)
- Millimeters mercury (mm Hg)
- Torr
- Bar
- Pound per square inch (psi)

TABLE 11.2 Units of Pressure Commonly Used in Chemistry

Unit standard atmosphere (atm)	Origin	Definition
mmHg	Barometer measurement	$1 \mathrm{~atm}=101,325 \mathrm{~Pa}$
torr	Name given to mmHg in honor of Torricelli, the inventor of the barometer	$1 \mathrm{mmHg}=133.322 \mathrm{~Pa}$
bar	Same order of magnitude as atm, but a decimal multiple of Pa	$13 \mathrm{bar}=1 \times 10^{5} \mathrm{~Pa}$

- How much pressure does the air exert on Earth?
Applying :
pressure $=\frac{\text { force }}{\text { area }}$

An imaginary column of air above a $1 \mathrm{~cm}^{2}$ spot at sea level weighs approximately 1 kg .

- force $=1 \mathrm{~kg} \times 9.81 \mathrm{~m} / \mathrm{s}^{2} \approx 10 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}=10 \mathrm{~N}$
- Pressure $=10 \mathrm{~N} / 0.0001 \mathrm{~m}^{2}=1 \times 10^{5} \mathrm{~Pa}$
$1 \times 10^{5} \mathrm{~Pa}$ is the approximate pressure at sea level and is roughly equal to 1 atm .

Chapter 11 Section 1

Barometer

- The barometer is a simple device that is used to measure the atmospheric pressure and was invented by Torricelli.
- The pressure exerted by the mercury column is equal to the pressure exerted by the atmosphere.

Chapter 11 Section 1

Standard Atmospheric Pressure

- Standard atmospheric

 pressure (1 atm) is defined as the pressure that would support a column of mercury exactly 760 mm high at $0^{\circ} \mathrm{C}$ at sea level.```
1 atm*
101,325 Pa
760 mmHg*
760 torr*
1.01325 bar
14.7 psi
*These are exact numbers.
```



Chapter 11 Section 1
Manometer

- A manometer is a device used to measure pressures other than atmospheric pressure; e.g. gas samples.



Chapter 11 Section 1

## Exercise

If a weatherman says that atmospheric pressure is 29.12 inches of mercury, what is it in torr?
29.12 in $\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}\right)\left(\frac{10 \mathrm{~mm}}{1 \mathrm{~cm}}\right)\left(\frac{1 \text { torr }}{1 \mathrm{~mm}}\right)=739.6$ torr

## - <br> The Gas Laws

Chapter 11 Section 2

- Boyle's Law

$$
P V=k \quad \text { at constant } T \text { and } n
$$

- Charles's and Gay-Lussac's Law

$$
V=b T \quad \text { at constant } P \text { and } n
$$

- Avogadro's Law

$$
V=a n \quad \text { at constant } T \text { and } P
$$



Where $V$ is volume, $P$ is pressure, $T$ is temperature, and $n$ is number of moles.

## Chapter 11 Section 2

## Boyle's Law

- Boyle studied the relationship between pressure $(P)$ and volume $(V)$ for gases at constant temperature ( $T$ ).
- Adding more Hg at constant $T$ compresses the gas (less $V$ and higher $P$ ).



Chapter 11 Section 2
Plotting Boyle's Results


Inverse relationship.

$$
V \propto 1 / P
$$

$P$ drops by half when $V$ is doubled.

$$
P V=\text { constant }
$$


$y=m x+b$
(equation of the straight line)

$$
V=\frac{k_{1}}{P}
$$

Chapter 11 Section 2
Boyle's Law

$$
P V=k_{1}
$$

- The product of $P$ and $V$ is always equal to the same constant as long as the temperature is held constant and the amount of gas doesn't change.

Chapter 11 Section 2

## Application of Boyle's Law

1.53 L of $\mathrm{SO}_{2}$ is initially at a pressure of $5.6 \times 10^{3} \mathrm{~Pa}$. If the pressure is changed to $1.5 \times 10^{4} \mathrm{~Pa}$ at constant temperature, what will be the new volume?
$P V=k_{1}$
$P_{1} V_{1}=k_{1}=P_{2} V_{2}$
$T$ is constant and the gas is assumed to be ideal.

$$
V_{2}=\frac{P_{1} V_{1}}{P_{2}}=0.57 \mathrm{~L}
$$



Chapter 11 Section 2

## Charles's and Gay-Lussac's Law



Pouring liquid nitrogen $\left(-196^{\circ} \mathrm{C}\right)$ lowers the temperature of the He balloon; which causes the volume to decrease.

Chapter 11 Section 2

## Charles's and Gay-Lussac's Law

- Charles and Gay-Lussac found that the $V$ of a gas increases linearly with the increase of $T$, when $P$ is held constant.

$$
V=k_{2} T
$$



- The volume-temperature lines having different slopes at different pressure all extrapolate to zero volume at $T=-273.15^{\circ} \mathrm{C}$.


Chapter 11 Section 2
Absolute Zero

- $T=-273.15^{\circ} \mathrm{C}$ was defined by Lord Kelvin to be the absolute zero.
- Absolute zero is common for all gases.
- Absolute temperature scale:
$\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$


Absolute zero

- $1 \times 10^{-6} \mathrm{~K}$ was reached in laboratories, but 0 K has never been reached.


## Chapter 11 Section 2

## Charles's Law

$$
V=k_{2} \mathrm{~T}
$$

- The volume of a fixed amount of gas maintained at a constant pressure is directly proportional to the absolute temperature of the gas.

$$
\begin{gathered}
\frac{V_{1}}{T_{1}}=k_{2}=\frac{V_{2}}{T_{2}} \\
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
\end{gathered}
$$

Chapter 11 Section 2
Avogadro's Law

- Avogadro's law: Equal volumes of different gases contain the same number of particles at the same $T$ and $P$.


$$
V=k_{3} n
$$

(Linear relationship between $V$ and $n$ at constant $P$ and $T$ )

$$
\frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}}
$$

Chapter 11 Section 2

## Applications of Avogadro's Law

- A balanced chemical equation reveals the ratio of reactants and products in terms of number of moles as well as in terms of volumes at constant $T$ and $P$.



## Chapter 11 Section 2

## Applications of Avogadro's Law

12.2 L sample containing 0.50 moles of $\mathrm{O}_{2}$ at $P=1.00 \mathrm{~atm}$ and $T=25^{\circ} \mathrm{C}$ is converted into $\mathrm{O}_{3}$ at the same $T$ and $P$. What would be the volume of $\mathrm{O}_{3}$ ?

$$
3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{O}_{3}
$$

$\# \mathrm{~mol}$ of $\mathrm{O}_{3}$ produced $=0.50 \mathrm{~mol} \mathrm{O}_{2} \times \frac{2 \mathrm{~mol} \mathrm{O}_{3}}{3 \mathrm{~mol} \mathrm{O}_{2}}=0.33 \mathrm{~mol} \mathrm{O}_{3}$

$$
\begin{gathered}
\frac{n_{\mathrm{O}_{2}}}{V_{\mathrm{O}_{2}}}=k_{3}=\frac{n_{\mathrm{O}_{3}}}{V_{\mathrm{O}_{3}}} \\
V_{2}=\left(\frac{n_{2}}{n_{1}}\right) V_{1}=8.1 \mathrm{~L}
\end{gathered}
$$



The volume decreases because fewer number of molecules will be present after $\mathrm{O}_{2}$ is converted to $\mathrm{O}_{3}$.

How will the volume of a given gas change if the


$$
2 \times 2 \times \frac{1}{2}=2 \Rightarrow \text { volume doubles }
$$

Chapter 11 Section 3

## The Ideal Gas Equation



## The Ideal Gas Equation

- It is an equation of state for a gas. A particular state of a gas is described by its $P, V, n$ and $T$.
- A gas that precisely obeys the ideal gas law is said to be "ideal", or to behave "ideally". An ideal gas is a hypothetical substance.
- We always assume ideal gas behavior when you solve problems involving gases.
- The gas constant, $R$, can be expressed in several ways.

|  | Numerical Value | Unit |
| :---: | :--- | :--- |
|  | 0.08206 | $\mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{mol}$ |
|  | 62.36 | $\mathrm{~L} \cdot \mathrm{torr} / \mathrm{K} \cdot \mathrm{mol}$ |
|  | 0.08314 | $\mathrm{~L} \cdot \mathrm{bar} / \mathrm{K} \cdot \mathrm{mol}$ |
|  | 8.314 | $\mathrm{~m} \cdot \mathrm{~Pa} / \mathrm{K} \cdot \mathrm{mol}$ |
|  | 8.314 | $\mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$ |
|  | 1.987 | $\mathrm{cal} / \mathrm{K} \cdot \mathrm{mol}$ |
| Dr. A. Al-Saadi |  |  |



## Chapter 11 Section 3

## Applications of the Ideal Gas Equation

For an ideal gas, calculate the pressure of the

$$
\begin{gathered}
P \cdot V=n \cdot R \cdot T \\
P=\text { pressure } \\
V=\text { volume }
\end{gathered}
$$ gas if 0.215 mol occupies 338 mL at $32.00^{\circ} \mathrm{C} . n=$ number of molecules

$\sigma$ Don't forget to use proper units.

$$
R=\text { constant }
$$

$T=$ temperature
$n=0.215 \mathrm{~mol}$
$V=338 \mathrm{~mL}=0.338 \mathrm{~L}$
$T=32.00+273.15=305.15 \mathrm{~K}$
$P=$ ?
$P V=n R T \quad \Rightarrow \quad P=n R T / V$
$P=\frac{(0.215 \mathrm{~mol})\left(0.08206 \frac{\mathrm{~L} \times \mathrm{atm}}{\mathrm{mol} \times \mathrm{K}}\right)(305.15 \mathrm{~K})}{0.338 \mathrm{~L}}=15.928$

A sample of $\mathrm{H}_{2}$ gas has $V=8.56 \mathrm{~L}$ @ $T=0.00^{\circ} \mathrm{C}$ and $P=1.5 \mathrm{~atm}$. How many $\mathrm{H}_{2}$ molecules are present?


## Chapter 11 Section 3

## Applications of the Ideal Gas Equation

A sample methane with $V=3.8 \mathrm{~L} @ 5^{\circ} \mathrm{C}$ is heated to $86^{\circ} \mathrm{C}$ at constant $P$, what is the new volume?
$\frac{V_{1}}{T_{1}}=\frac{n R}{P}=\frac{V_{2}}{T_{2}}$
$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \quad$ (Charles's Law)
$V_{2}=V_{1} T_{2} / T_{1}=(359 \mathrm{~K})(3.8 \mathrm{~L}) / 278 \mathrm{~K}=4.9 \mathrm{~L}$
$\sigma$ Again, don't forget to state $T$ in K .
$\sigma$ Does the answer make sense to you?

Chapter 11 Section 3

## Standard Temperature and Pressure

- The condition of a sample of gas with:$T=0^{\circ} \mathrm{C}$, and
- $P=1 \mathrm{~atm}$
is know as standard temperature and pressure (STP).
- The ideal gas equation is not exact, but for most of the real gases, it is quite accurate near STP.



## Chapter 11 Section 3 <br> Molar Volume

What is the volume of 1.000 mole of a gas at standard temperature and pressure (STP)?

STP : $T=0^{\circ} \mathrm{C} ; P=1 \mathrm{~atm}$.
$V=\frac{n R T}{T}=\frac{(1.000 \mathrm{~mol})(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{mol})(273.15 \mathrm{~K})}{(1.000 \mathrm{~atm})}$
TABLE 5.2 Molar Volumes for
$=22.42 \mathrm{~L}$ (Molar volume @ STP) Various Gases at $0^{\circ} \mathrm{C}$ and 1 atm

| Gas | Molar <br> Volume $(\mathbf{L})$ |
| :--- | :---: |
| Oxygen $\left(\mathrm{O}_{2}\right)$ | 22.397 |
| Nitrogen $\left(\mathrm{N}_{2}\right)$ | 22.402 |
| Hydrogen $\left(\mathrm{H}_{2}\right)$ | 22.433 |
| Helium $(\mathrm{He})$ | 22.434 |
| Argon $(\mathrm{Ar})$ | 22.397 |
| Carbon dioxide $\left(\mathrm{CO}_{2}\right)$ | 22.260 |
| Ammonia $\left(\mathrm{NH}_{3}\right)$ | 22.079 |

For an ideal gas @ STP: $1 \mathrm{~mol} \equiv 22.42 \mathrm{~L}$
22.42 L

Chapter 11 Section 3

## Applications of Molar Volume

At STP, how many atoms of neon gas are present in 0.500 L sample of neon gas?

Assuming ideal behavior:
1 mol Ne has volume of 22.42 L
$\# \mathrm{~mol} \mathrm{Ne}=0.500 \mathrm{~L} \mathrm{Ne} \times \frac{1 \mathrm{~mol} \mathrm{Ne}}{22.42 \mathrm{~L} \mathrm{Ne}}$

$=2.23 \times 10^{-2} \mathrm{~mol} \mathrm{Ne}$
$\# \mathrm{Ne}$ atoms $=2.23 \times 10^{-2} \mathrm{~mol} \mathrm{Ne} \times \frac{6.022 \times 10^{23} \mathrm{Ne} \text { atoms }}{1 \mathrm{~mol} \mathrm{Ne} \text { atoms }}$ $=1.34 \times 10^{22} \mathrm{Ne}$ atoms

Chapter 11 Section 3

## Molar Mass of a Gas

For an ideal gas:
$n=\frac{\text { mass }}{M M}$ where $M M$ is the molar mass.

$P=\frac{n R T}{V}=\frac{(\operatorname{mass} / M M) R T}{V}=\frac{(\operatorname{mass}) R T}{V(M M)}$
Since the density of a gas $(d)=\frac{\text { mass }}{V}$
Then, $P=d \frac{R T}{M M}$


$$
\mathrm{g} / \mathrm{L}
$$

Reactions with Gaseous Reactants and Products



Calcite/limestone

Dr. A. Al-Saadi

$\mathrm{CaCO}_{3}$


Quicklime (CaO)

## Chapter 11 Section 4 <br> Reactions with Gaseous Reactants and Products


$\mathrm{NaN}_{3}$ (sodium azide) is an explosive material. It explodes very fast and completes the reaction in 40 ms . Thus, it is used in airbag technology.


## Reactions with Gaseous Reactants

 and Products$$
2 \mathrm{LiOH}(a q)+\mathrm{CO}_{2}(g) \xrightarrow{@ 25^{\circ} \mathrm{C} \text { and } 2.5 \times 10^{5} \mathrm{~L}} \mathrm{Li}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The pressure of the submarine drops from 0.9970 atm to 0.9891 atm as a result of $\mathrm{CO}_{2}$ being consumed by LiOH scrubber. How many grams of $\mathrm{CO}_{2}$ are consumed?

At constant temperature and volume:
$n=P \times\left(\frac{V}{R T}\right) \left\lvert\, \Delta n_{\mathrm{CO}_{2}}=7.9 \times 10^{-3} \operatorname{atm} \frac{2.5 \times 10^{5} \mathrm{~L}}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~K} \cdot \mathrm{~mol}}\right)(298.15 \mathrm{~K})}=81 \mathrm{~mol} \mathrm{CO}_{2}\right.$
$\Delta n=\Delta P \times\left(\frac{V}{R T}\right) \quad$ Mass of $\mathrm{CO}_{2}=(81 \mathrm{~mol}) \times(44.01 \mathrm{~g} / \mathrm{mol})=$ $3.6 \times 10^{3} \mathrm{~g} \mathrm{CO}_{2}$

Chapter 11 Section 4

## Reactions with Gaseous Reactants and Products

$$
\begin{aligned}
& \mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g) \\
& \text { Pressure } \\
& 1.65 \mathrm{~atm} \\
& 1.25 \mathrm{~atm} \\
& 2.50 \mathrm{~atm} \\
& \text { Volume } \\
& 2.80 \text { L } \\
& \text { Temperature } \\
& 298 \text { K } \\
& \text { 35.0 L } \\
& \text { ? } \\
& n=\frac{P V}{R T} \\
& 0.189 \mathrm{~mol} \\
& 1.75 \mathrm{~mol} \quad=\quad 0.189 \mathrm{~mol} \\
& \text { Limiting reactant because it requires } \\
& 0.189 \mathrm{~mol} \times 2=0.378 \mathrm{~mol} \text { of } \mathrm{O}_{2} \\
& V_{\mathrm{CO}_{2}}=\frac{n R T}{P}=\frac{(0.189 \mathrm{~mol})(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{~mol})(398 \mathrm{~K})}{(2.50 \mathrm{~atm})}=2.47 \mathrm{~L} \mathrm{CO}_{2}
\end{aligned}
$$


[^0]:    Dr. A. Al-Saadi

