

Chapter 8 Section 1																	
<i>Lewis dot symbol</i> shows only the valence electrons.																	
1A 1																	8A 18
•н	2A 2											3A 13	4A 14	5A 15	6A 16	7A 17	He:
۰Li	•Be•											۰ġ۰	٠ċ٠	Ň	٠ö٠	:F·	:Ne:
•Na	•Mg•	3B 3	4B 4	5B 5	6B 6	7B 7	8	- 8B 9	10	1B 11	2B 12	٠Ål•	-Si-	·ŗ.	٠ <u>;</u> .	:Ċŀ	:År:
•к	•Ca•											٠Ġa•	•Ge•	•Ås•	•Se•	Br	:Ķr:
•Rb	۰Sr•											۰In•	•Sn•	•Sib•	٠Ţe•	٠ï٠	:Xe:
•Cs	•Ba•											۰Ťŀ	Pb	·Bi·	·Po·	At	:Rn:
۰Fr	•Ra•																
г . А. Аl-S	Saadi																4

	Chapter 8	Section 2						
	Lattice Energy							
o Th	ne greater t	he lattice energy, the more	stable the compoun					
	TABLE 8.1	Lattice Energies of Selected Ionic Comp	ounds					
	Compound	Lattice Energy (kJ/mol)	Melting Point (°C)					
	LiF	1017	845					
	LiCl	828	610					
	LiBr	787	550					
	LiI	732	450					
	NaCl	788	801					
	NaBr	736	750					
	NaI	686	662					
	KCl	699	772					
	KBr	689	735					
	KI	632	680					
	MgCl ₂	2527	714					
	Na ₂ O	2570	Sub*					
	MgO	3890	2800					
l-Saadi	*Na ₂ O sublimes at 1	275°C.						

Chapter 8 Se The Born Lattice E TABLE 8.2	ction 2 1-Haber Cycle to nergy of NaCl(s) ical Series of Steps in the For Constituent Elements	Calculate the	
Step	Chemical Equation	Energy Change (kJ/mol)	
1. Atomization of Na(s)*	$Na(s) \longrightarrow Na(g)$	107.7	
2. Dissociation of $\operatorname{Cl}_2(g)^{\dagger}$	$\frac{1}{2}Cl_2(g) \longrightarrow Cl(g)$	121.4	
3. Ionization of $Na(g)^{\ddagger}$	$Na(g) \longrightarrow Na^+(g) + e^-$	495.9	
4. Electron affinity of Cl§	$\operatorname{Cl}(g) + e^{-} \longrightarrow \operatorname{Cl}^{-}(g)$	-349	
*Standard heat of formation (ΔH_1^2 *Standard heat of formation (ΔH_2^2) of Na(g) from Appendix 2. (Some tin) of Cl(g) from Appendix 2. (Some tin	ne called heat of sublimation) ne called bond enthalpy)	
6. Heat of formation NaCl((s)	- 410.9	
From Hess's Law:	← St 1 + 2 + 3 +	4 + 5 = 6	
5 = 6 - ('	1 + 2 + 3 + 4) = -78	36 kJ/mol	

Chapter 8 Se Bond Pc	ection 4 Dlarity				
M:X	$M^{\delta +} X^{\delta -}$	M^+X^-			
Pure covalent bond	Polar covalent bond	Ionic bond			
Neutral atoms held together by <i>equally</i> shared electrons	Partially charged atoms held together by unequally shared electrons	Oppositely charged ion held together by electrostatic attraction			
Covalent character		Ionic character			
	Polarity Bond stre	ength			
	δ+ δ-	+ –			
F : F	H F	Na \$ F			
Dr. A. Al-Saadî					

 Chapter 8 Section 4 Dipole Moment and Partial Charge 										
	HF 1.82 D									
	HCl 1.08 D									
	HBr 0.82 D									
	HI 0.44 D									
TABLE 8.5	Bond Lengths and Dipole Moments of	the Hydrogen Halides								
Molecule	Bond Length (Å)	Dipole Moment (D)								
HF	0.92	1.82								
HCl	1.27	1.08								
HBr	1.41	0.82								
HI	1.61	0.44								

• • •	 Chapter 8 Section 3 Multiple Bonds Bond lengths follow this order: <i>Triple bond < Double bond < Single bond</i> 									
	Average bond lengths of some common single, double and triple bonds									
	Bond Bond C-N 143									
	lype	Length (pm)	C=N	138						
	С-Н	107	C≡N	116						
	O-H	96	N-N	147						
	С-О	143	N=N	124						
	C=O	121	N≡N	110						
	C≡O 113 N−O 136									
	C-C	154	N=O	122						
	C=C	133	0-0	148						
Dr. A. Al-Saadi	C≡C	120	0=0	121						

Average B	Sond	Enthalpy		
	TABLE 8.	5 Bond Enthalpies		
• Average bond	Bond	Bond Enthalpy (kJ/mol)	Bond	Bond Enthalpy (kJ/mol)
enthalnies are used	H-H*	436.4	C-S	255
cititalpies are used	H-N	393	C=S	477
for polyatomic	H-O	460	N-N	193
1 1	H-S	368	N=N	418
molecules.	H-P	326	N≡N	941.4
• • • • • • • • • • • • • • • • • • • •	H-F	568.2	N-O	176
• Average bond	H-CI	431.9	N=O	607
enthalnies can be	H-Br	366.1	0-0	142
citilaipies can be	H-I	298.3	0=0	498.7
used to estimate	С-Н	414	O-P	502
the anthe law of	C-C	347	O=S	469
the enthalpy of	C=C	620	P-P	197
chemical reactions	C=C	812	P=P	489
chemical reactions.	C-N	276	S-S	268
	C=N	615	S=S	352
	C=N	891	F-F	156.9
	с-о	351	CI-CI	242.7
	C=O'	745	CI-F	193
	C=O	1070	Br-Br	192.5

TABLE	8.5 Bond Le	ngths for Selected Bo	onds
Bond	Bond Type	Bond Length (pm)	Bond Energy (kJ/mol
с—с	Single	154	347
C=C	Double	134	614
E≡C	Triple	120	839
с—о	Single	143	358
C=0	Double	123	745
C—N	Single	143	305
C=N	Double	138	615
CIN	Triple	116	891

	Chapter	· 8 S	ection 9						
•••	Bon	d E	nergy	anc	d Ent	halpy	Y		
	TABLE 8	.4 Ave	rage Bond	Energies	(kJ/mol)				
			Single B	londs			Multiple	Bonds	
	$\begin{array}{c} H - H \\ H - F \\ H - Cl \\ H - Br \\ H - I \\ \hline \\ C - C \\ C - N \\ C - O \\ C - F \\ \hline \\ C - Cl \\ \hline \\ C - Br \\ C - I \\ C - S \end{array}$	432 565 427 363 295 413 347 305 358 485 339 276 240 259	$\begin{array}{c} N - H \\ N - N \\ N - F \\ N - Cl \\ N - Br \\ N - O \\ O - H \\ O - O \\ O - F \\ O - Cl \\ O - I \\ \hline \\ F - F \\ F - Cl \\ F - Br \\ Cl - Cl \\ F - Br \\ Cl - Cl \\ F - Br \\ Br - Br \\ \end{array}$	391 160 272 200 243 201 467 146 190 203 234 154 253 237 239 218 193	I-I $I-CI$ $I-Br$ $S-H$ $S-F$ $S-CI$ $S-Br$ $S-S$ $Si-Si$ $Si-H$ $Si-C$ $Si-O$	149 208 175 347 253 218 266 340 393 360 452	$\begin{array}{c} C = C \\ C \equiv C \\ 0 = 0 \\ C = 0^* \\ C \equiv 0 \\ N = N \\ N \equiv N \\ C \equiv N \\ C = N \end{array}$	614 839 495 745 1072 607 418 941 891 615	Ι(<i>g</i>) -CΙ
Dr. A. Al-Saadi							*C=0(C0	2) = 799	61