

•••	Chapter 5 Section 2 Internal Energy (U), Heat (q) and Work (w)	
0	Exercise: What is the ΔU for a system undergoing a process in which 15.6 kJ of heat flows into it and 1.4 kJ of work is done on it?	
	In order to calculate ΔU , we must know the values and signs of q and w. It is an endothermic process where: q = +15.6 kJ and $w = +1.4$ kJ. $\Delta U = (15.6 + 1.4)$ kJ = + 17.0 kJ	
Dr. A. Al-Saadî	1 kilojoule (kJ) = 1000 J	24

 Chapter 5 Section 3 Thermochemical Equations 			
0	<i>Thermochemical equations</i> represent both mass and enthalpy changes.		
	$H_2O(s) \rightarrow H_2O(l)$ $\Delta H = + 6.01 \text{ kJ/mol}$		
H ₂ O(<i>l</i>) H_f Heat absorbed by the system from the surroundings $\Delta H = +6.01 \text{ kJ/s}$ $H_2O(s)$ H_i	 change, but the sign becomes –ve. The enthalpy value will change if the 		

 Chapter 5 Section 3 Thermochemical Equations
$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(l)$ $\Delta H = -890.4 \text{ kJ/mol}$
CH ₄ (g) + 2O ₂ (g) H_{f} Heat given off by the system to the surroundings $\Delta H = -890.4 \text{ kJ/mol}$ $CO_{2}(g) + 2H_{2}O(I)$ H_{i} This is an <i>exothermic</i> process. It releases 890.4 kJ when one mole of methane, CH ₄ , reacts. When the process is reversed it becomes <i>endothermic</i> . The magnitude of ΔH doesn't change, but the sign becomes +ve. The enthalpy value will change if the number of moles varies from the 1:2:1:2 reaction stoichiometry. For example, 1790.8 kJ energy is released when 2 moles of methane, CH ₄ , react.
Dr. A. Al-Saadi 32

Chapter 5 Section 3 Exercise Given the following equation: $C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(I)$ $\Delta H = -2803 \text{ kJ/mol}$ Calculate the energy released when 45.00 g of glucose is burned in oxygen. $45.00 \text{ g } C_6H_{12}O_6 \times \frac{1 \text{ mol } C_6H_{12}O_6}{180.2 \text{ g } C_6H_{12}O_6} \times \frac{2803 \text{ kJ}}{1 \text{ mol } C_6H_{12}O_6} = 700.0 \text{ kJ}$

TABLE 5.2 Specific Heat V	alues of Some Common Substances
Substance	Specific Heat (J/g · °C)
Al(s)	0.900
Au(s)	0.129
C (graphite)	0.720
C (diamond)	0.502
Cu(s)	0.385
Fe(s)	0.444
Hg(<i>l</i>)	0.139
$H_2O(l)$	4.184
$C_2H_5OH(l)$ (ethanol)	2.46

TABLE 5.3		s of Some Typical Reactions and Physical Proce onstant Pressure	
Type of Reac	tion	Example	∆ <i>H</i> (kJ/mol
Heat of neutraliz	zation	$\text{HCl}(aq) + \text{NaOH}(aq) \longrightarrow \text{H}_2\text{O}(l) + \text{NaCl}(aq)$	-56.2
Heat of ionization	on	$H_2O(l) \longrightarrow H^+(aq) + OH^-(aq)$	+56.2
Heat of fusion		$H_2O(s) \longrightarrow H_2O(l)$	+6.01

•••	Chapter 5 Section 4 Bomb Calorimeter Calculation
	A combustion of 0.5269g of octane (C_8H_{18}) in a bomb calorimeter results in an increase in T by 2.25°C. Calculate ΔU for the reaction if $C_{cal.}$ = 11.3 kJ/°C. The reaction is: $C_8H_{18}(s) + 25/2 O_2(g) \longrightarrow 8CO_2(g) + 9H_2O(g) - 5.50 \times 10^3 \text{ kJ}$
	$q \text{ released by rxn} = \Delta T \times C_{\text{cal.}} = (2.25 \text{ °C})(11.3 \text{ kJ/°C}) = 25.4 \text{ kJ}$ To get ΔU (in kJ/mol) for the reaction: $0.5269 \text{ g octane} \times \frac{1 \text{ mol octane}}{114.2 \text{ g octane}} = 4.614 \times 10^{-3} \text{ mol octane}$ For 1 mole of octane: $25.4 \text{ kJ} / 4.614 \times 10^{-3} \text{ mol octane}$ $= -5.50 \times 10^3 \text{ kJ/mol}$ (Exothermic) Thus $q_V = \Delta U = -5.50 \times 10^3 \text{ kJ/mol}$
Dr. A. Al-Saadi	48

•••	Chapter 5 Section 5 Hess's Law	
o F	or the reaction:	
	$A + B \longrightarrow C$	+ D
Δ	<i>H</i> is the same whether:	
Δ <i>H</i> is a	• The reaction takes place in one ste	p.
state function	• The reaction takes place in a series more).	s of steps (two or
	$\begin{array}{cccc} A + E & \longrightarrow & C + F & \Delta H \\ B + F & \longrightarrow & D + E & \Delta H \end{array}$	I_1
	$B + F \longrightarrow D + E \Delta H$	<i>I</i> ₂
-	$A + B \longrightarrow C + D$	$H = \Delta H_1 + \Delta H_2$
Dr. A. Al-Saadi		49

	Chapter 5 Section 5 Hess's Law	
o Fo	or the reaction: $A + B \longrightarrow C + D$	
ΔI	<i>H</i> is the same whether:	
state	The reaction takes place in one step. The reaction takes place in a series of steps (two or more).	
o Al	lso notice that:	
	When: $A + B \longrightarrow C + D$ has $\Delta H = +x$,	
	then $C + D \longrightarrow A + B$ has $\Delta H = -x$	
Δ <i>H</i> is an extensive property	and $2A + 2B \longrightarrow 2C + 2D$ has $\Delta H = +2x$	
Dr. A. Al-Saadi		50

 Chapter 5 Section 5 Practicing Hess's Law 	
Given the following data:	
$ClF(g) + F_{2}(g) \longrightarrow ClF_{3}(g)$ $ClF(g) + \frac{1}{2}O_{2}(g) \longrightarrow \frac{1}{2}Cl_{2}O(g) + \frac{1}{2}F_{2}O(g) \qquad \frac{1}{2}\Delta H_{1}$ $\frac{1}{2}Cl_{2}O(g) + \frac{3}{2}F_{2}O(g) \longrightarrow ClF_{3}(g) + O_{2}(g) \qquad -\frac{1}{2}\Delta H_{2}$ $F_{1}(g) + \frac{1}{2}O(g) = F_{2}O(g) \qquad F_{2}O(g) \qquad -\frac{1}{2}\Delta H_{2}$	
$F_{2}(g) + \frac{1}{2} O_{2}(g) \longrightarrow F_{2}O(g) \qquad \frac{1}{2} \Delta H_{3}$ $ClF(g) + F_{2}(g) \longrightarrow ClF_{3}(g) \qquad \Delta H = -108.7 \text{ kJ}$	

• • • • • • • • • • • • • • • • • • •				
Can you predict the reactions of formation of the compounds listed in the table from reactants	TABLE 6.2Standard Enthalpiesof Formation for SeveralCompounds at 25°C			
at their standard states?	Compound	ΔH_{f}° (kJ/mol)		
$\begin{array}{rl} 1/2 \ \mathrm{N_2}(g) + \ 3/2 \ \mathrm{H_2}(g) \rightarrow \\ 1/2 \ \mathrm{N_2}(g) + \ \mathrm{O_2}(g) & \rightarrow \\ \mathrm{H_2}(g) & + \ 1/2 \ \mathrm{O_2}(g) \rightarrow \\ 2 \ \mathrm{Al}(s) & + \ 3/2 \ \mathrm{O_2}(g) \rightarrow \\ 2 \ \mathrm{Fe}(s) & + \ 3/2 \ \mathrm{O_2}(g) \rightarrow \\ \mathrm{C_{graphite}}(s) + \ \mathrm{O_2}(g) & \rightarrow \\ \mathrm{C_{graphite}}(s) + \ \mathrm{O_2}(g) & \rightarrow \\ \mathrm{C_{graphite}}(s) + \ 1/2 \ \mathrm{O_2}(g) + 2 \mathrm{H_2}(g) & \rightarrow \\ \mathrm{8 \ C_{graphite}}(s) + \ 9 \mathrm{H_2}(g) & \rightarrow \end{array}$	$\begin{array}{l} \mathrm{NH}_{3}(g) \\ \mathrm{NO}_{2}(g) \\ \mathrm{H}_{2}\mathrm{O}(l) \\ \mathrm{Al}_{2}\mathrm{O}_{3}(s) \\ \mathrm{Fe}_{2}\mathrm{O}_{3}(s) \\ \mathrm{CO}_{2}(g) \\ \mathrm{CH}_{3}\mathrm{OH}(l) \\ \mathrm{C}_{8}\mathrm{H}_{18}(l) \end{array}$	-46 34 -286 -1676 -826 -394 -239 -269		
Dr. A. Al-Saadi		5		

• • • Calculating ΔH°_{rxn} from Stan of Formation	ndard Entl TABLE 6.2 Sta of Formation fo Compounds at 2	r Several
$CH_{4}(g) + 2O_{2}(g) \longrightarrow CO_{2}(g) + 2H_{2}O(l)$ $C(s) + 2H_{2}(g) \longrightarrow CH_{4}(g) \qquad \Delta H_{f}^{\circ}(a) = -75 \text{ kJ}$ $O_{2}(g) \xrightarrow{\text{(standard state'')}} \qquad \Delta H_{f}^{\circ}(b) = 0 \text{ kJ}$ $C(s) + O_{2}(g) \longrightarrow CO_{2}(g) \qquad \Delta H_{f}^{\circ}(c) = -394 \text{ kJ}$ $H_{2}(g) + \frac{1}{2}O_{2}(g) \longrightarrow H_{2}O(l) \qquad \Delta H_{f}^{\circ}(d) = -286 \text{ kJ}$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\frac{\Delta H_{\rm f}^{\circ} (\rm kJ/mol)}{-46}$ -46 34 -286 -1676 -826 -394 -239 -239 -269
$\Delta H^{o}_{rxn} = \sum n_{products} \Delta H^{o}_{f}_{(products)} - \sum n_{res}$ $\Delta H^{o}_{rxn} = -\left[\Delta H^{o}_{f}(a)\right] - \left[\Delta H^{o}_{f}(b)\right] + \left[\Delta H^{o}_{f}(c)\right] + 2 \times \left[\Delta H^{o}_{f}(c)\right] + \left[-75 \text{ kJ}\right] + \left[0 \text{ kJ}\right] + \left[-394 \text{ kJ}\right] + 2\left[-2 \text{ cm}\right]$ $= -891 \text{ kJ}$	H _f ^o (d)]	actants)

Substance	ΔH [°] f (kJ/mol)	Substance	∆ <i>H</i> [°] f (kJ/mol)
Ag(s)	0	H ₂ O ₂ (/)	-187.6
AgCI(s)	-127.04	Hg(/)	0
AI(s)	0	I ₂ (s)	0
$AI_2O_3(s)$	-1669.8	HI(g)	25.94
Br ₂ (/)	0	Mg(s)	0
HBr(g)	-36.2	MgO(s)	-601.8
C(graphite)	0	MgCO ₃ (s)	-1112.9
C(diamond)	1.90	$N_2(g)$	0
CO(g)	-110.5	$NH_3(g)$	-46.3
$CO_2(g)$	-393.5	NO(g)	90.4
Ca(s)	0	$NO_2(g)$	33.85
CaO(s)	-635.6	$N_2O_4(g)$	9.66
CaCO ₃ (s)	-1206.9	$N_2O(g)$	81.56
$Cl_2(g)$	0	O(g)	249.4
HCI(g)	-92.3	O ₂ (g)	0
Cu(s)	0	O ₃ (g)	142.2
CuO(s)	-155.2	S(rhombic)	0
$F_2(g)$	0	S(monoclinic)	0.30
HF(g)	-268.61	$SO_2(g)$	-296.1
H(g)	218.2	$SO_3(g)$	-395.2
H₂(g)	0	$H_2S(g)$	-20.15
$H_2O(g)$	-241.8	ZnO(s)	-347.98
H ₂ O(/)	-285.8		