

- \mid Preview
- Introduction to thermochemistry:
- Potential energy and kinetic energy.

- Chemical energy.
- Internal energy, work and heat.
- Exothermic vs. endothermic reactions.
- $P V$ work.
- Enthalpy.
- Calorimetry.
- Hess's law.
- Standard enthalpies of formation.

-

Chapter 5 Section 1
The Transformation of Energy

- The law of conservation of energy.
Energy can be converted from one form to another but can neither be created nor destroyed.

$$
E_{\text {Universe }}=\text { constant }
$$

First law of thermodynamics; the law of conservation of energy

- All forms of energy are either potential or kinetic.

Chapter 5 Section 1

Kinetic Energy

- Kinetic Energy (KE): due to the motion of an object.
- $\mathrm{KE}=1 / 2\left(m u^{2}\right)$

m is mass and u is velocity
- Thermal Energy - one form of kinetic energy associated with the random motion of atoms/ molecules.
Thermal energy α Temperature.

Chapter 5 Section 1
Potential Energy

- Potential Energy (PE): due to position or composition.
- Chemical energy - is stored within structural units of chemical substances.
- Electrostatic energy is energy resulting from the interaction of charged particles.
$E_{\mathrm{el}} \propto \frac{Q_{1} Q_{2}}{d}$
- $Q=$ charge $; d=$ distance
- $+E_{\mathrm{el}}$: repulsive

- $-E_{\mathrm{el}}$: attractive
- KE and PE are interconvertible.

	PE	KE
$$	Water behind a dam	Water when it falls down from the dam
$$	Gasoline before it burns (chemical energy)	when gasoline burns up and gives power to the engine (thermal energy)

Remember that interconversion between PE and KE is always governed by the law of conservation of energy.

- System vs. surroundings

Energy Changes in Chemical Reactions

- Combustion of fossil fule:
$\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)+$ thermal energy

Energy lost from the system = Energy gained by the surroundings

Energy Changes in Chemical Reactions

- Formation of nitric oxide:

$$
\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g)+\text { thermal energy }(\text { heat }) \longrightarrow 2 \mathrm{NO}(g)
$$

Energy gained by the system = Energy lost from the surroundings

Chapter 5 Section 1

Exothermic and Endothermic Reactions

- In methane combustion the energy (heat) flows out of the system.
It is an exothermic reaction.
Another
example:
$\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}_{2} \mathrm{O}(s)+$ energy (heat)
- Nitric oxide formation is an endothermic reaction.
$\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g)+$ energy (heat) $\longrightarrow 2 \mathrm{NO}(g)$
Here the heat flows from the surroundings into the system.
Another
example:
$\mathrm{H}_{2} \mathrm{O}(s)+$ energy $($ heat $) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)$

Chapter 5 Section 1
Exothermic and Endothermic Reactions

Exothermic

Endothermic

Chapter 5 Section 1
 Units of Energy

- Joule (J) is the SI unit for energy.
- The amount of energy possessed by a 2 kg mass moving at a speed of $1 \mathrm{~m} / \mathrm{s}$.

$$
\begin{aligned}
E_{\mathrm{k}} & =\frac{1}{2} m u^{2} \\
& =\frac{1}{2}(2 \mathrm{~kg})(1 \mathrm{~m} / \mathrm{s})^{2} \\
& =1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}=1 \mathrm{~J}
\end{aligned}
$$

- The amount of energy exerted when a force of 1 Newton (N) is exerted over 1 m distance.

$$
\begin{aligned}
1 \mathrm{~J} & =1 \mathrm{~N} \cdot \mathrm{~m} \\
1 \mathrm{~N} & =1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Chapter 5 Section 1

Units of Energy

- Calorie (cal) - commonly used on food labels.
- $1 \mathrm{cal}=4.184 \mathrm{~J}$
- $1000 \mathrm{cal}=1 \mathrm{Cal}=1 \mathrm{kcal}$
- Food calories (Cal) are really 1000 calories (cal).

Chapter 5 Section 1

Exercise

Calculate the kinetic energy of a neon atom moving at a speed of $98 \mathrm{~m} / \mathrm{s}$.

$$
\begin{gathered}
E_{\mathrm{k}}=\frac{1}{2} m u^{2} \\
E_{\mathrm{k}}=\frac{1}{2}\left(3.352 \times 10^{-26} \mathrm{~kg}\right)(98 \mathrm{~m} / \mathrm{s})^{2} \\
E_{\mathrm{k}}=1.6 \times 10^{-22} \mathrm{~J}
\end{gathered}
$$

Chapter 5 Section 2

Types of Systems

- Types of systems:
open (exchange of mass and energy)
- closed (exchange of energy)
- isolated (no exchange)

Chapter 5 Section 2

States and State Functions

- The change in the state function (property) depends only on the initial and final states of the system and not on how the change was carried out.
- Energy, pressure, volume, temperature are examples of state functions.

Elevation is always the same (state function).
Distances traveled by the two hikers differ. Efforts exercised by them are also not the same (not state functions)

Chapter 5 Section 2
Internal Energy (U)

$$
\mathrm{S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g})
$$

- We can not calculate the total internal energy with any certainty for a individual reactants/products.
- But we can calculate the change in energy of the system experimentally.

$$
\begin{aligned}
\boldsymbol{\Delta} \boldsymbol{U} & =\boldsymbol{U}_{\text {products }} \text { or } \boldsymbol{U}_{\text {final }}-\boldsymbol{U}_{(\text {reactants })} \text { or } \boldsymbol{U}_{\text {initial }} \\
& =\text { energy content of } 1 \mathrm{~mol} \mathrm{SO}_{2}(g)-
\end{aligned}
$$

energy content of $1 \mathrm{~mol} \mathrm{~S}(s)$ and $1 \mathrm{~mol}_{\mathrm{O}_{2}(g)}$

Chapter 5 Section 2
 Internal Energy (U) in Exothermic Reactions

ENERGY

Some PE stored in the chemical bonds is converted to KE (thermal energy) via heat. In exothermic reactions products have lower energy on average.

$\mathrm{SO}_{2}(\mathrm{~g})$

Chapter 5 Section 2
Internal Energy (\mathbf{U}) in Endothermic Reactions

ENERGY

Chapter 5 Section 2

Heat and Work

- Energy is defined as the capacity to do work (w) or transfer heat (q).

$$
\Delta \boldsymbol{U}=\boldsymbol{q}+w
$$

- When a system absorbs or releases heat, its internal energy changes.
- When a system does work on the surrounding, or when the surrounding does work on the system, the internal energy of the system changes.

Chapter 5 Section 2

Internal Energy (U), Heat (q) and Work (w)

- U can be changed by a flow of work, heat, or both:

$$
\Delta U=q+w
$$

Heat is flowing out of the system (q is -)
Work is done by the system (w is -)
Dr. A. Al-Saadi \boldsymbol{U} is decreasing $(\boldsymbol{\Delta} \boldsymbol{U}<\mathbf{0})$

Heat is going into the system (q is +)
Work is done on the system (w is +)
U is increasing $(\Delta U>0)$

Chapter 5 Section 2
Internal Energy (U), Heat (q) and Work (w)

- Exercise:

What is the ΔU for a system undergoing a process in which 15.6 kJ of heat flows into it and 1.4 kJ of work is done on it?

In order to calculate ΔU, we must know the values and signs of q and w.
It is an endothermic process where:
$q=+15.6 \mathrm{~kJ}$ and $w=+1.4 \mathrm{~kJ}$.
$\Delta U=(15.6+1.4) \mathrm{kJ}=+17.0 \mathrm{~kJ}$
1 kilojoule $(\mathrm{kJ})=1000 \mathrm{~J}$

\section*{-	Chapter 5 Section 3
The Pressure-Volume, or PV, Work	}

(a) Initial state
(b) Final state
work $=$ force \times distance pressure $=$ force $/$ area Thus: work $=$ pressure \times area \times distance

$$
\begin{aligned}
w & =P \times A \times \Delta h \\
w & =P \times \Delta V \\
w & =-P \times \Delta V
\end{aligned}
$$

This gives how much work is being done by the system to expand a gas ΔV against a constant external pressure P.

Chapter 5 Section 3
Decomposition of NaN_{3} at Constant Volume

$$
2 \mathrm{NaN}_{3}(s) \longrightarrow 2 \mathrm{Na}(s)+3 \mathrm{~N}_{2}(g)
$$

At constant volume $=>\Delta V=0$

$\Delta U=q-P \Delta V$	Normally, P is referred to the external pressure.
$\Delta \boldsymbol{U}=\boldsymbol{q}_{\boldsymbol{V}}$	

Chapter 5 Section 3
Enthalpy (H)

- Enthalpy of a system is defined as:

$$
\begin{gathered}
H=U+P V \\
\Delta H=\Delta U+\Delta P V
\end{gathered}
$$

- Is H a state function? and way?

Yes it is, because E, P and V are all state functions.

- For a system at constant P and its w is only $P V$ work:
$\Delta H=\Delta U+P \Delta V=q_{P}$

At constant P where only $P V$ work is allowed:

$$
\Delta H=q_{P}
$$

Chapter 5 Section 3

Enthalpy Change (ΔH) for Chemical Reactions

- Most of the chemical reactions performed in the laboratory are constant-pressure processes. Thus, the heat exchanged between the system and the surroundings is equal to the change in enthalpy.
- Heat of a reaction and change in enthalpy are equivalent terms when chemical reactions are studied at P constant.

$$
\Delta H_{\mathrm{rxn}}=H_{\text {products }}-H_{\text {reactants }}
$$

- For $H_{\text {products }}>H_{\text {reactants }}$
$\Delta H_{\mathrm{rxn}}=+\mathrm{ve}=>$ Endothermic reaction.
- For $H_{\text {products }}<H_{\text {reactants }}$
$\Delta H_{\mathrm{rxn}}=-\mathrm{ve}=>$ Exothermic reaction.
- Thermochemical equations represent both mass and enthalpy changes.

$$
\mathrm{H}_{2} \mathrm{O}(s) \rightarrow \mathrm{H}_{2} \mathrm{O}(l) \quad \Delta H=+6.01 \mathrm{~kJ} / \mathrm{mol}
$$

- This is an endothermic process. It requires 6.01 kJ to melt one mole of ice, $\mathrm{H}_{2} \mathrm{O}(s)$.

- When the process is reversed it becomes exothermic. The magnitude of ΔH doesn't change, but the sign becomes -ve.
The enthalpy value will change if the number of moles varies from the $1: 1$ reaction stoichiometry. For example, to melt 2 moles of ice, 12.02 kJ energy is required.

Chapter 5 Section 3
Thermochemical Equations
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H=-890.4 \mathrm{~kJ} / \mathrm{mol}$

This is an exothermic process. It releases 890.4 kJ when one mole of methane, CH_{4}, reacts.

- When the process is reversed it becomes endothermic. The magnitude of ΔH doesn't change, but the sign becomes +ve .
- The enthalpy value will change if the number of moles varies from the 1:2:1:2 reaction stoichiometry. For example, 1790.8 kJ energy is released when 2 moles of methane, CH_{4}, react.

Chapter 5 Section 3

Exercise

When 1 mole of CH_{4} is burned at constant $P, 890$ kJ of energy is released as heat. Calculate ΔH for a process in which a 5.8 g sample of CH_{4} is burned at constant P.

At constant P :

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta H=-890 \mathrm{~kJ}
$$

Chapter 5 Section 3
Exercise
Given the following equation:

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+ 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l} \\
& \Delta \mathrm{H}=-2803 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

Calculate the energy released when 45.00 g of glucose is burned in oxygen.
$45.00 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \times \frac{1 \mathrm{molC}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{180.2 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \times \frac{2803 \mathrm{~kJ}}{1 \mathrm{molC}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}=700.0 \mathrm{~kJ}$

Chapter 5 Section 4

Calorimetry

- Calorimetry is to measure heat by observing the change in T when a body absorbs or releases energy as heat.
Some materials need too much energy to raise their $T 1^{\circ} \mathrm{C}$. Other materials need much less energy to raise their $T 1^{\circ} \mathrm{C}$.
- Heat Capacity, C, is the amount of heat required to raise T of an object by $1^{\circ} \mathrm{C}$.

$$
\begin{aligned}
C & =\frac{\text { heat absorbed }}{\text { increase in } T} \\
& =\frac{\mathrm{J}}{{ }^{\circ} \mathrm{C}}=\frac{\mathrm{J}}{\mathrm{~K}}
\end{aligned}
$$

C depends on the amount of the substance.
"extensive property"

Specific Heat Capacity

- It would be more useful when C is given per unit mass, such as grams.
- Specific Heat Capacity (s) of a substance is: the amount of heat required to raise T of 1 gram of that substance by $1^{\circ} \mathrm{C}$.
- \boldsymbol{s} does NOT depend on the amount of the substance.
"intensive property"
- \boldsymbol{s} for $\mathrm{H}_{2} \mathrm{O}=4.184 \mathrm{~J} /{ }^{\circ} \mathrm{C} \cdot \mathrm{g}$

$$
\begin{gathered}
s=\frac{q}{m a s s \times \Delta T} \\
q=\text { mass } \times s \times \Delta T \\
q=C \times \Delta T
\end{gathered}
$$

where q is heat, m is mass, s is specific heat, C is heat capacity, and ΔT is change in temp. $\left(\Delta T=T_{\text {final }}-T_{\text {initial }}\right)$

Chapter 5 Section 4

Specific Heat Capacity

TABLE 5.2

Specific Heat Values of Some Common Substances

It takes much less energy to raise the energy of 1 g of a metal than for 1 g for water

Chapter 5 Section 4

Specific Heat Capacity

Exercise:

Calculate the amount of energy required to heat 95.0 grams of water from $22.5^{\circ} \mathrm{C}$ to $95.5^{\circ} \mathrm{C}$.

$$
\begin{gathered}
q=m s \Delta T \\
q=(95.0 \mathrm{~g})\left(4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right)\left(95.5^{\circ} \mathrm{C}-22.5^{\circ} \mathrm{C}\right) \\
q=2.90 \times 10^{4} \mathrm{~J} \text { or } 29.0 \mathrm{~kJ}
\end{gathered}
$$

Chapter 5 Section 4 Constant-Pressure Calorimetry
Consider the following process of mixing a strong acid with a strong base:

HCl	NaOH
50.0 mL	+50.0 mL
1.0 M	1.0 M

T goes up from $25.0^{\circ} \mathrm{C}$ to $31.9^{\circ} \mathrm{C}$.
Calculate the heat released by the above acid-base reaction.
A simple Styrofoam-cup calorimeter
Dr. A. Al-Saadi

, any Can you now find ΔH in $\mathrm{kJ} / \mathrm{mol}$ for the neutralization reaction.

$$
\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)
$$

Chapter 5 Section 4

Constant-Pressure Calorimetry

TABLE 5.3 Heats of Some Typical Reactions and Physical Processes Measured at Constant Pressure

Type of Reaction	Example	$\Delta \boldsymbol{H}(\mathbf{k J} / \mathrm{mol})$
Heat of neutralization	$\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{NaCl}(a q)$	-56.2
Heat of ionization	$\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q)$	+56.2
Heat of fusion	$\mathrm{H}_{2} \mathrm{O}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l)$	+6.01
Heat of vaporization	$\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}_{2} \mathrm{O}(g)$	$+44.0^{*}$
$*$ Measured at $25^{\circ} \mathrm{C}$. At $100^{\circ} \mathrm{C}$ the value is $+40.79 \mathrm{kJ}$.		

- Because V is constant, $P \Delta V=0$ and there will be no work done $(w=0)$.
At constant V calorimeter:

$$
\Delta U=q_{V}
$$

- It is also know as "bomb calorimeter", where the sample is ignited.
- Heat of combustion is usually measured using bomb calorimeters.

Chapter 5 Section 4

Bomb Calorimeter

- ○
 Chapter 5 Section 4
 Bomb Calorimeter

- All heat released by the combustion reaction is absorbed by the calorimeter.

$$
\begin{aligned}
& q_{\mathrm{cal}}=-q_{\mathrm{rxn}} \\
& q_{\mathrm{cal}}=C_{\mathrm{cal}} \Delta T \\
& q_{\mathrm{rxn}}=-C_{\mathrm{cal}} \Delta T
\end{aligned}
$$

- $C_{\text {cal }}$ is the energy required to raise T of water and other parts of the bomb calorimeter by $1^{\circ} \mathrm{C}$.
- $C_{\text {cal }}$ for any bomb calorimeter can be determined by burning a substance with a known heat of combustion.

Chapter 5 Section 4

Bomb Calorimeter Calculation

The combustion of 1.00 g of benzoic acid releases 26.38 kJ of heat. In one experiment, we wanted to measure the heat capacity of a bomb calorimeter by burning 1.00 g of benzoic acid. The temperature increased by $4.673^{\circ} \mathrm{C}$. What is heat capacity of that bomb calorimeter?

$$
q_{\mathrm{cal}}=C_{\mathrm{cal}} \Delta T
$$

Bomb Calorimeter Calculation

- A combustion of 0.5269 g of octane $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right)$ in a bomb calorimeter results in an increase in T by $2.25^{\circ} \mathrm{C}$.
Calculate ΔU for the reaction if $C_{\text {cal }}=11.3 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$.
The reaction is:
$\mathrm{C}_{8} \mathrm{H}_{18}(s)+25 / 2 \mathrm{O}_{2}(g) \longrightarrow 8 \mathrm{CO}_{2}(g)+9 \mathrm{H}_{2} \mathrm{O}(g) \quad-\mathbf{5 . 5 0} \times \mathbf{1 0} \mathbf{~} \mathbf{k J}$
q released by rxn $=\Delta T \times C_{\text {cal. }}=\left(2.25^{\circ} \mathrm{C}\right)\left(11.3 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}\right)=25.4 \mathrm{~kJ}$
To get ΔU (in $\mathrm{kJ} / \mathrm{mol}$) for the reaction:
0.5269 g octane $\times \frac{1 \mathrm{~mol} \text { octane }}{114.2 \mathrm{~g} \text { octane }}=4.614 \times 10^{-3} \mathrm{~mol}$ octane

For 1 mole of octane: $25.4 \mathrm{~kJ} / 4.614 \times 10^{-3} \mathrm{~mol}$ octane

$$
=-5.50 \times 10^{3} \mathrm{~kJ} / \mathrm{mol} \quad \text { (Exothermic) }
$$

Thus $q_{V}=\Delta U=-5.50 \times 10^{3} \mathrm{~kJ} / \mathrm{mol}$

Chapter 5 Section 5

Hess's Law

- For the reaction:

$$
\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{C}+\mathrm{D}
$$

ΔH is the same whether:
$\underset{\text { state }}{\Delta H}$ is \quad The reaction takes place in one step.
function - The reaction takes place in a series of steps (two or more).

$$
\begin{array}{ll}
\mathrm{A}+\mathrm{E} \longrightarrow \begin{array}{l}
\mathrm{E}+\mathrm{F} \\
\mathrm{~B}+\mathrm{F} \\
\mathrm{D}+\mathrm{E}
\end{array} & \begin{array}{l}
\Delta H_{1} \\
\Delta H_{2}
\end{array} \\
\mathrm{~A}+\mathrm{B} \longrightarrow & \mathrm{C}+\mathrm{D}
\end{array} \quad \Delta H=\Delta H_{1}+\Delta H_{2}
$$

Chapter 5 Section 5

Hess's Law

- For the reaction:

$$
\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{C}+\mathrm{D}
$$

ΔH is the same whether:
ΔH is a The reaction takes place in one step.
state
function - The reaction takes place in a series of steps (two or more).

- Also notice that:

When: $\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{C}+\mathrm{D}$ has $\Delta H=+x$,
then $\quad \mathrm{C}+\mathrm{D} \longrightarrow \mathrm{A}+\mathrm{B}$ has $\Delta H=-x$
ΔH is an
and $\quad 2 \mathrm{~A}+2 \mathrm{~B} \longrightarrow 2 \mathrm{C}+2 \mathrm{D}$ has $\Delta H=+2 x$
extensive property

Chapter 5 Section 5

Practicing Hess's Law

$$
\begin{array}{ll}
\text { Given the following data: } \\
\times 1 / 2 & 2 \mathrm{ClF}(g)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{Cl}_{2} \mathrm{O}(g)+\mathrm{F}_{2} \mathrm{O}(g) \\
\times(-1 / 2) & 2 \mathrm{ClF}_{3}(g)+2 \mathrm{O}_{2}(g) \longrightarrow H_{1}=167.4 \mathrm{~kJ} \\
\times 1 / 2 & 2 \mathrm{Cl}_{2} \mathrm{O}(g)+3 \mathrm{~F}_{2} \mathrm{O}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 H_{2}=341.4 \mathrm{~kJ} \\
& \text { Calculate } \Delta H \text { for the reaction: }
\end{array}
$$

$\mathrm{ClF}(g)+\mathrm{F}_{2}(g) \longrightarrow \mathrm{ClF}_{3}(g)$

$\mathrm{ClF}(g)+1 / 2 \mathrm{O}_{2}(g)$	\longrightarrow	$1 / 2 \mathrm{Cl}_{2} \mathrm{O}(g)+1 / 2 \mathrm{~F}_{2} \mathrm{O}(g)$	$1 / 2 \Delta H_{1}$
$1 / 2 \mathrm{Cl}_{2} \mathrm{O}(g)+3 / 2 \mathrm{~F}_{2} \mathrm{O}(g)$	\longrightarrow	$\mathrm{ClF}_{3}(g)+\mathrm{O}_{2}(g)$	$1 / 2 \Delta H_{2}$ $\mathrm{~F}_{2}(g)+1 / 2 \mathrm{O}_{2}(g)$
$\mathrm{ClF}(g)+\mathrm{F}_{2}(g)$	\longrightarrow	$\mathrm{F}_{2} \mathrm{O}(g)$	$1 / 2 \Delta H_{3}$
		$\mathrm{ClF}_{3}(g)$	$\Delta H=-108.7 \mathrm{~kJ}$

Chapter 5 Section 6

Standard Enthalpy of Formation ($\Delta H_{f}{ }^{\mathbf{0}}$)

- It is defined as the heat change that accompanies the formation of 1 mole of a compound from its elements in their standard states.

$$
\Delta H=68 \mathrm{~kJ}
$$

$$
\Delta H=34 \mathrm{~kJ}
$$

- There is no method to determine the absolute H value.

We can only calculate the change in $H(\Delta H)$ from thermodynamics experiments.

- $\boldsymbol{\Delta} \boldsymbol{H}_{\mathbf{f}}^{\mathbf{0}}$ "Enthalpy of formation" of an element $(\mathrm{Na}, \mathrm{He})$ or a compound $\left(\mathrm{O}_{2}, \mathrm{H}_{2}\right)$ in its standard state is zero

$$
\text { Standard state means } 1 \mathrm{~atm}, 25^{\circ} \mathrm{C} \text {. }
$$

Chapter 5 Section 6
Standard Enthalpy of Formation ($\Delta H_{f}{ }^{\mathbf{0}}$)
$\Delta H_{\mathrm{f}}{ }^{\circ}$ is ΔH that accompanies the formation of 1 mole of a product from its elements with all substances in their standard states.

$$
\begin{aligned}
& \mathrm{N}_{2}(g)+2 \mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g) \quad \Delta H=68 \mathrm{~kJ} \\
& 1 / 2 \underline{\mathrm{~N}_{2}(g)}+\underline{\mathrm{O}_{2}(g)} \longrightarrow 1 \mathrm{NO}_{2}(g) \quad \Delta H=34 \mathrm{~kJ} \\
& \text { Elements @ standard states } \\
& \Delta H_{\mathrm{f}}{ }^{\circ}=0 \quad \Delta H_{\mathrm{f}}{ }^{\mathrm{o}}=34 \mathrm{~kJ} / \mathrm{mol} \\
& \mathrm{C}(s)+2 \mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{CH}_{3} \mathrm{OH}(l) \quad \Delta H_{\mathrm{f}}^{0}=-239 \mathrm{~kJ} / \mathrm{mol} \\
& 2 \mathrm{Fe}(s)+3 / 2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(s) \quad \Delta H_{\mathrm{f}}^{0}=-826 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

Chapter 5 Section 6

Standard Enthalpy of Formation ($\Delta H_{f}{ }^{\mathbf{0}}$)

Can you predict the reactions of formation of the compounds listed in the table from reactants at their standard states?

$$
\begin{aligned}
1 / 2 \mathrm{~N}_{2}(g)+3 / 2 \mathrm{H}_{2}(g) & \rightarrow \\
1 / 2 \mathrm{~N}_{2}(g)+\mathrm{O}_{2}(g) & \rightarrow \\
\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) & \rightarrow \\
2 \mathrm{Al}(s)+3 / 2 \mathrm{O}_{2}(g) & \rightarrow \\
2 \mathrm{Fe}(s)+3 / 2 \mathrm{O}_{2}(g) & \rightarrow \\
\mathrm{C}_{\text {graphite }}(s)+\mathrm{O}_{2}(g) & \rightarrow \\
\mathrm{C}_{\text {graphite }}(s)+1 / 2 \mathrm{O}_{2}(g)+2 \mathrm{H}_{2}(g) & \rightarrow \\
8 \mathrm{C}_{\text {graphite }}(s)+9 \mathrm{H}_{2}(g) & \rightarrow
\end{aligned}
$$

TABLE 6.2 Standard Enthalpies of Formation for Several Compounds at $25^{\circ} \mathrm{C}$

Compound	$\Delta \boldsymbol{H}_{\mathrm{f}}^{\circ}(\mathbf{k} \mathbf{j} / \mathrm{mol})$
$\mathrm{NH}_{3}(g)$	-46
$\mathrm{NO}_{2}(g)$	34
$\mathrm{H}_{2} \mathrm{O}(l)$	-286
$\mathrm{Al}_{2} \mathrm{O}_{3}(s)$	-1676
$\mathrm{Fe}_{2} \mathrm{O}_{3}(s)$	-826
$\mathrm{CO}_{2}(g)$	-394
$\mathrm{CH}_{3} \mathrm{OH}(l)$	-239
$\mathrm{C}_{8} \mathrm{H}_{18}(l)$	-269

Chapter 5 Section 6

Calculating $\Delta \boldsymbol{H}^{\circ}{ }_{\mathrm{rxn}}$ from Standard Enthalpies of Formation

TABLE 6.2 Standard Enthalpies of Formation for Several Compounds at $25^{\circ} \mathrm{C}$
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\mathrm{C}(s)+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathbf{C H}_{4}(\boldsymbol{g})$
$\Delta H_{\mathrm{f}}^{\mathrm{o}}(\mathrm{a})=-75 \mathrm{~kJ}$
$\mathbf{O}_{\mathbf{2}}(\mathrm{g})$ "standard state"
$\Delta H_{\mathrm{f}}^{\mathrm{o}}(\mathrm{b})=0 \mathrm{~kJ}$
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H_{\mathrm{f}}^{\mathrm{o}}(\mathrm{c})=-394 \mathrm{~kJ}$
$\mathrm{H}_{2}(g)+1 / 2 \mathrm{O}_{2}(g) \longrightarrow \mathbf{H}_{2} \mathbf{O}(\mathrm{I}) \quad \Delta H_{\mathrm{f}}^{\mathrm{o}}(\mathrm{d})=-286 \mathrm{~kJ}$

Compound	$\Delta \boldsymbol{H}_{\mathrm{f}}^{\circ}(\mathbf{k} \mathbf{J} / \mathbf{m o l})$
$\mathrm{NH}_{3}(g)$	-46
$\mathrm{NO}_{2}(g)$	34
$\mathrm{H}_{2} \mathrm{O}(l)$	-286
$\mathrm{Al}_{2} \mathrm{O}_{3}(s)$	-1676
$\mathrm{Fe}_{2} \mathrm{O}_{3}(s)$	-826
$\mathrm{CO}_{2}(g)$	-394
$\mathrm{CH}_{3} \mathrm{OH}(l)$	-239
$\mathrm{C}_{8} \mathrm{H}_{18}(l)$	-269

$$
\begin{gathered}
\Delta \boldsymbol{H}_{\mathbf{r x n}}^{\mathbf{0}}=\sum \boldsymbol{n}_{\text {products }} \boldsymbol{\Delta} \boldsymbol{H}_{\mathbf{f} \text { (products) }}^{\mathbf{0}}-\sum \boldsymbol{n}_{\text {reactants }} \boldsymbol{\Delta} \boldsymbol{H}_{\mathbf{f} \text { (reactants) }}^{\mathbf{0}} \\
\begin{aligned}
\Delta H_{\mathrm{rxn}}^{\mathrm{o}} & =-\left[\Delta H_{\mathrm{f}}^{\mathrm{o}}(\mathrm{a})\right]-\left[\Delta H_{\mathrm{f}}^{\mathrm{o}}(\mathrm{~b})\right]+\left[\Delta H_{\mathrm{f}}^{\mathrm{o}}(\mathrm{c})\right]+2 \times\left[\Delta H_{\mathrm{f}}^{\circ}(\mathrm{d})\right] \\
& =-[-75 \mathrm{~kJ}]+[0 \mathrm{~kJ}]+[-394 \mathrm{~kJ}]+2[-286 \mathrm{~kJ}] \\
& =-891 \mathrm{~kJ}
\end{aligned}
\end{gathered}
$$

$\bigcirc 0$	Table 6.3 Inorganic S	ard Enthalpie ces at $25^{\circ} \mathrm{C}$	ormation	
	Substance	$\Delta H_{\text {f }}(\mathrm{kJ} / \mathrm{mol})$	Substance	$\Delta H_{\ddagger}^{\circ}(\mathrm{kJ} / \mathrm{mol})$
	$\mathrm{Ag}(\mathrm{s})$	0	$\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l})$	-187.6
	$\mathrm{AgCl}(\mathrm{s})$	-127.04	$\mathrm{Hg}(1)$	0
	$\mathrm{Al}(\mathrm{s})$	0	$\mathrm{I}_{2}(\mathrm{~s})$	0
	$\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$	-1669.8	$\mathrm{HI}(\mathrm{g})$	25.94
	$\mathrm{Br}_{2}(1)$	0	$\mathrm{Mg}(\mathrm{s})$	0
	$\mathrm{HBr}(\mathrm{g})$	-36.2	$\mathrm{MgO}(\mathrm{s})$	-601.8
	C(graphite)	0	$\mathrm{MgCO}_{3}(\mathrm{~s})$	-1112.9
	C(diamond)	1.90	$\mathrm{N}_{2}(\mathrm{~g})$	0
	CO(g)	-110.5	$\mathrm{NH}_{3}(\mathrm{~g})$	-46.3
	$\mathrm{CO}_{2}(\mathrm{~g})$	-393.5	$\mathrm{NO}(\mathrm{g})$	90.4
	$\mathrm{Ca}(\mathrm{s})$	0	$\mathrm{NO}_{2}(\mathrm{~g})$	33.85
	$\mathrm{CaO}(\mathrm{s})$	-635.6	$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$	9.66
	$\mathrm{CaCO}_{3}(\mathrm{~s})$	-1206.9	$\mathrm{N}_{2} \mathrm{O}(\mathrm{g})$	81.56
	$\mathrm{Cl}_{2}(\mathrm{~g})$	0	$\mathrm{O}(\mathrm{g})$	249.4
	$\mathrm{HCl}_{(g)}$	-92.3	$\mathrm{O}_{2}(g)$	0
	$\mathrm{Cu}(\mathrm{s})$	0	$\mathrm{O}_{3}(\mathrm{~g})$	142.2
	$\mathrm{CuO}(\mathrm{s})$	-155.2	S (rhombic)	0
	$\mathrm{F}_{2}(\mathrm{~g})$	0	S (monoclinic)	0.30
	HF(g)	-268.61	$\mathrm{SO}_{2}(\mathrm{~g})$	-296.1
	$\mathrm{H}(\mathrm{g})$	218.2	$\mathrm{SO}_{3}(\mathrm{~g})$	-395.2
	$\mathrm{H}_{2}(\mathrm{~g})$	0	$\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$	-20.15
	$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.8	$\mathrm{ZnO}(\mathrm{s})$	-347.98
	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-285.8		

