

Chapter 3 Section 3	
Exercises	
Exercise I	
$(\mathrm{NH}_4)_2\mathrm{Cr}_2\mathrm{O}_7 \longrightarrow \mathrm{Cr}_2$	$O_3 + N_2 + H_2O$
2N, 8H, 2Cr, 7O 2N	, 2H , 2Cr , 40
Balancing the hydrogen and oxyg $(NH_4)_2Cr_2O_7 \rightarrow Cr_2$	gen in one step: $O_3 + N_2 + 4 H_2O$
Exercise II	
$\mathrm{C_6H_6}\left(l\right) \ + 13/2 \mathrm{O_2}\left(g\right) \rightarrow$	$6 \text{ CO}_2(g) + 3 \text{ H}_2\text{O}(g)$
6C , 6H , 2O	1C, 2H, 3O
6C , 6H , 2O	6C, 2H, 13O
6C , 6H , 13O	6C, 2H, 13O
6C , 6H , 15O	6C, 6H, 15O
$2 \operatorname{C}_{6}\operatorname{H}_{6}(l) + 15 \operatorname{O}_{2}(g) \rightarrow$	$12 \operatorname{CO}_2(g) + 6 \operatorname{H}_2 \operatorname{O}(g)$

Chapter 3 Section 6		
•••• Stoichiometric Calculations		
Solution:		
$NaHCO_3(s) + HCl(aq) \rightarrow NaCl(aq) + H_2O(l) + CO_2(aq)$		
$Mg(OH)_{2}(s) + 2HCl(aq) \rightarrow MgCl_{2}(aq) + 2H_{2}O(l)$		
$1.00 \text{ g NaHCO}_3 \times \frac{1 \text{ mol NaHCO}_3}{84.01 \text{ g NaHCO}_3} \times \frac{1 \text{ mol HCl}}{1 \text{ mol NaHCO}_3} = 1.19 \times 10^{-2} \text{ mol HCl}$		
$1.00 \text{ g Mg(OH)}_{2} \times \frac{1 \text{ mol Mg(OH)}_{2}}{58.32 \text{ g Mg(OH)}_{2}} \times \frac{2 \text{ mol HCl}}{1 \text{ mol Mg(OH)}_{2}} = 3.42 \times 10^{-2} \text{ mol HCl}$		
Thus, $Mg(OH)_2$ is better antacid than NaHCO ₃ per one gram.		
Dr. A. Al-Saadî 50		

	Chapter 3 Section 7 Limiting Reactants	
	loading	
Dr. A. Al-Saadi		51

