

- Concepts of atomic mass, molecular mass, mole, molar mass, and percent compositions.
- Balancing chemical equations.
o Stoichiometric calculations for reactants and products in a chemical reaction.
o Limiting reactants and percent yields.

Chapter 3 Section 1

Molecular Mass

- Molecular Mass : "some times called molecular weight"; mass of an individual molecule in atomic mass units (amu).
- Example: Calculate the molecular mass for carbon dioxide, CO_{2}.
Write down each element; multiply by atomic mass
$\mathrm{C}=1 \times 12.01=12.01 \mathrm{amu}$
$\mathrm{O}=2 \times 16.00=32.00 \mathrm{amu}$
Total mass $=12.01+32.00=44.01 \mathrm{amu}$

Chapter 3 Section 1

Formula Mass

- Formula Mass : mass of the "formula unit" of an ionic compound in atomic mass units (amu) from its empirical formula.
- Example: Calculate the formula mass for barium phosphate.
Barium phosphate has the empirical formula $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
$\mathrm{Ba}=3 \times 137.3=$ \qquad amu
$\mathrm{P}=2 \times 30.97=$ \qquad amu
$\mathrm{O}=4 \times 2 \times 16.00=$ \qquad amu.
Total mass= \qquad $+$ \qquad $+\quad=$ \qquad amu

Chapter 3 Section 2
 Percent Composition of Compounds

- Mass \% can be calculated by comparing the molecular mass of the atom to the molecular mass of the molecule.
- \% composition allows verification of purity of a sample

$$
\text { percent by mass of an element }=\frac{n \times \text { atomic mass of element }}{\text { molecular or formula mass of compound }} \times 100 \%
$$

- Mass \% can be calculated by comparing the molecular mass of the atom to the molecular mass of the molecule.
- Example: ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$:

Mass $\% \mathrm{O}=\frac{1 \text { (atomic mass of } \mathrm{O} \text {) }}{\text { molec. mass of } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}} \times 100 \%$

$$
=(100 \%) \frac{16.00 \mathrm{amu}}{46.07 \mathrm{amu}}=34.73 \%
$$

$$
\text { Mass } \% \mathrm{H}=\frac{6(\text { atomic mass of } \mathrm{H})}{\text { molec. mass of } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}} \times 100 \%
$$

Dr. A. Al-Saadi

$$
=(100 \%) \frac{6(1.01) \mathrm{amu}}{46.07 \mathrm{amu}}=13.13 \% \quad \begin{aligned}
& \text { Mass \%'s must be } \\
& \text { added up to } 100 \%
\end{aligned}
$$

Chapter 3 Section 3

Chemical Equations

- A chemical reaction is the chemical change involving reorganization of the atoms in one or more substances by breaking bonds and forming other new bonds.
- This is represented using a chemical equation.

$$
\mathrm{CH}_{4}+\mathrm{O}_{2} \quad \rightarrow \quad \mathrm{CO}_{2} \quad+\quad \mathrm{H}_{2} \mathrm{O}
$$

Chapter 3 Section 3

Chemical Equations

- Chemical equations must be balanced so that the numbers of each type of atoms in the reactant and product sides are equal.
- Physical states are also indicated in the chemical equation.

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(\boldsymbol{g}) \quad \rightarrow \quad \mathrm{CO}_{2}(\boldsymbol{g})+2 \mathrm{H}_{2} \mathrm{O}(\boldsymbol{g})
$$

Chapter 3 Section 3

Chemical Equations

- Chemical equations must be balanced so that the numbers of each type of atoms in the reactant and product sides are equal.
- Physical states are also indicated in the chemical equation.

$$
\mathrm{CH}_{4}(\boldsymbol{g})+2 \mathrm{O}_{2}(\boldsymbol{g}) \quad \rightarrow \quad \mathrm{CO}_{2}(\boldsymbol{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Chapter 3 Section 3

Chemical Equations

- Chemical equations can be also used to describe physical processes such as the dissolving of sucrose in water.

$$
\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(s) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(a q)
$$

Chapter 3 Section 3

Balancing Chemical Equations

- Chemical equations must be balanced in order to make sense. Unbalanced equations violate the law of conservation of mass.

- Balancing achieved by writing appropriate stoichiometric coefficients for each reactant and product.

Chapter 3 Section 3

Balancing Chemical Equations

- Chemical equations must be balanced in order to make sense. Unbalanced equations violate the law of conservation of mass.

$$
\text { (2) } \mathrm{H}_{2}(g)+1 \mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)
$$

- Balancing achieved by writing appropriate stoichiometric coefficients for each reactant and product.

Chapter 3 Section 3
 Balancing Chemical Equations

- Tips in balancing a chemical equation:
- You can only change the reaction coefficients, not the atom subscripts or the molecular formulas.
- Use trial and error methods.
- Change coefficients for compounds before changing coefficients for elements.
- Count carefully, being sure to recount after each coefficient change.
- Write the balanced equation in the final form and do a reality check.
- Train yourself by doing more problems.

Chapter 3 Section 3

Exercises

Exercise I
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
$2 \mathrm{~N}, 8 \mathrm{H}, 2 \mathrm{Cr}, 7 \mathrm{O}$$\quad \rightarrow \quad \begin{aligned} & \mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{N}_{2}+\mathrm{H}_{2} \mathrm{O} \\ & 2 \mathrm{~N}, 2 \mathrm{H}, 2 \mathrm{Cr}, 4 \mathrm{O}\end{aligned}$
Balancing the hydrogen and oxygen in one step:
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \quad \rightarrow \quad \mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{N}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
Exercise II
$\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+13 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \quad 6 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$6 \mathrm{C}, 6 \mathrm{H}, 2 \mathrm{O}$
$1 \mathrm{C}, 2 \mathrm{H}, 3 \mathrm{O}$
6C, 6H, 2 O
$6 \mathrm{C}, 2 \mathrm{H}, 13 \mathrm{O}$
6C, 6H, 13 O
$6 \mathrm{C}, 2 \mathrm{H}, 13 \mathrm{O}$
6C, 6H, 15O
$6 \mathrm{C}, 6 \mathrm{H}, 15 \mathrm{O}$
$2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+15 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \quad 12 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Chapter 3 Section 3
More Exercises

- $\mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
- $\mathrm{FeO}+\mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}$
- Chemists must work with the chemical reactions on a macroscopic level rather than few number of molecules.

- Molecules combine in the ratio specified by the stiochiometric coefficients in the chemical equation.
- 1 dozen of doughnuts contains exactly 12 doughnuts.
- 1 mole of a substance contains
6.02214×10^{23}, Avogadro's number $\left(N_{\mathrm{A}}\right)$, entities of that substance.
$6.022 \times 10^{23}=602,200,000,000,000,000,000,000$
Can you imagine it??

1 mole of seconds
1 mole of marbles
1 mole of paper sheets

How Big is the Mole??

- -
 Chapter 3 Section 4
 The Moles in Chemistry

- Scientific (SI) definition of the mole:
- 1 mole is the number of carbon atoms contained in exactly 12 g sample of pure ${ }^{12} \mathrm{C}$.
- The mole is our "counting number" for atoms, molecules and ions much like a dozen is our counting number for
 cookies or doughnuts.

Chapter 3 Section 4
The Moles in Chemistry

2 dozens $\mathrm{H}_{2}+1$ dozen $\mathrm{O}_{2} \rightarrow 2$ dozens $\mathrm{H}_{2} \mathrm{O}$

2 moles $\mathrm{H}_{2}+1$ mole $\mathrm{O}_{2} \rightarrow 2$ moles $\mathrm{H}_{2} \mathbf{O}$

Chapter 3 Section 4
The Mole in the Chemical Equation

How much information can balanced chemical reactions give us??

Chapter 3 Section 4
 Moles and Atoms

$N_{\mathrm{A}}=$ Avogadro's number

- Example: Calculate the number of atoms found in 4.50 moles of silicon.
- Example: How many moles of silicon are in 2.45 $\times 10^{45}$ atoms?
- Chemists count the number of atoms by measuring their mass.
- Molar Mass of a given substance is the mass in grams of 1 mole of that substance.
- By definition, the mass of 1 mole of ${ }^{12} \mathrm{C}$ is exactly 12 g .

> For any substance (numerically):
> Atomic mass $(\mathrm{amu})=$ Mass for 1 mole $(\mathrm{g} / \mathrm{mol})$

Chapter 3 Section 4 Molar Mass

- 12 g of ${ }^{12} \mathrm{C}$ has 1 mole of ${ }^{12} \mathrm{C}$ atoms. (By definition) 12.01 g of C has 1 mole of C atoms.

Because $\frac{12 \mathrm{~g}}{12.01 \mathrm{~g}}=\frac{12 \mathrm{amu}}{12.01 \mathrm{amu}}-\begin{aligned} & \text { Relative masses of a } \\ & \text { single atom of }{ }^{12} \mathrm{C} \\ & \text { and natural } \mathrm{C}\end{aligned}$
Then both samples of ${ }^{12} \mathrm{C}$ and natural C contain the same no. of components (1 mole).

This is applied on all other elements when their masses are determined with respect to the mass of the ${ }^{12} \mathrm{C}$ atom.

Average weight $=12.010 \mathrm{amu}$
1 mole weighs 12.010 g

He

Average weight $=4.003 \mathrm{amu}$
1 mole weighs 4.003 g

For any substance (numerically):
Atomic mass (amu) = Mass for 1 mole $(\mathrm{g} / \mathrm{mol})$

Chapter 3 Section 4

Molar Mass

- 1 mole of Li atoms $=6.022 \times 10^{23} \mathrm{Li}$ atoms $=6.941 \mathrm{~g}$ of Li .
- Al???

1 mole of Al atoms $=6.022 \times 10^{23} \mathrm{Al}$ atoms $=26.98 \mathrm{~g}$ of Al.

- Mercury??

1 mole of Hg atoms $=6.022 \times 10^{23} \mathrm{Hg}$ atoms $=200.6 \mathrm{~g}$ of Hg .

Chapter 3 Section 4
Molar Mass

- Molar mass of a compound is obtained by adding up the atomic masses of the atoms composing the compound.
- Examples (MM = molar mass):
- Atomic mass for $\mathrm{O}=16.00 \mathrm{~g} / \mathrm{mol}$.
- Atomic mass for $\mathrm{C}=12.01 \mathrm{~g} / \mathrm{mol}$.
- MM for $\mathrm{CO}=(12.01+16.00) \mathrm{g} / \mathrm{mol}=28.01 \mathrm{~g} / \mathrm{mol}$.
- MM for $\mathrm{CaCO}_{3}=(40.08+12.01+3 \times 16.00) \mathrm{g} / \mathrm{mol}$.

$$
=100.09 \mathrm{~g} / \mathrm{mol} .
$$

.o.
Chapter 3 Sections 4
Summary

- Mass of a ${ }^{12} \mathrm{C}$ atom $=12 \mathrm{amu}$. (by definition)
- Mass of 1 mole of ${ }^{12} \mathrm{C}=12 \mathrm{~g}$
- Mass of 1 mole of element X in grams is numerically equal to the average atomic mass of the same element in atomic mass unit (amu).
- 1 mole $=6.022 \times 10^{23}=$ Avogadro's number
- Molar mass (MM) = the mass of 1 mole of a substance usually expressed in $\mathrm{g} / \mathrm{mol}$.

Chapter 3 Sections 4 Group Activity		
	56 $\mathbf{B a}$ 137.30	
- The atomic mass of a sulfur atom is \qquad amu. - 1 mol of sulfur has the mass of grams. - 1 mole of sulfur contains atoms of sulfur atoms.	- The atomic mass of a barium atom is amu. - 1 mol of barium has the mass of grams. - 1 mole of barium contains atoms of barium atoms.	- The atomic mass of a manganese atom is amu. - 1 mol of manganese has the mass of grams. - 1 mole of manganese contains atoms of manganese atoms.

- -
 Moles and Molar Masses

Chapter 3 Section 4

- Exercise
a. Calculate the molar mass of juglone $\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{3}\right)$.
b. How many moles of juglone are in a $1.56 \times 10^{-2} \mathrm{~g}$ sample?

Chapter 3 Section 4

Moles and Molar Masses

- Exercise:

A diamond contains 5.0×10^{21} atoms of carbon. What amount (moles) of carbon and what mass (grams) of carbon are in this diamond?
\# moles of $\mathrm{C}=5.0 \times 10^{21}$ atoms of $\mathrm{C} \times \frac{1 \text { mole of } \mathrm{C}}{6.022 \times 10^{23} \text { atoms of } \mathrm{C}}$
mass in $\mathrm{g}=5.0 \times 10^{21}$ atoms of $\mathrm{C} \times \frac{1 \overline{\text { mole of } \mathrm{C}}}{6.022 \times 10^{23} \text { atems of } \mathrm{C}} \times \frac{12.01 \mathrm{~g} \text { of C }}{1 \text { mole of } \mathrm{C}}$

Moles and Molar Masses

- Exercise:

Molar Mass and Numbers of Molecules
Isopentyl acetate $\left(\mathrm{C}_{7} \mathrm{H}_{44} \mathrm{O}_{2}\right)$ is the compound responsible for the scent of bananas. A molecular model of isopentyl acetate is shown in the margin below. Interestingly, bees release about $1 \mu \mathrm{~g}\left(1 \times 10^{-6} \mathrm{~g}\right)$ of this compound when they sting. The resulting scent attracts other bees to join the attack. How many molecules of isopentyl acetate are released in a typical bee sting? How many atoms of carbon are present?

Chapter 3 Section 4

Moles and Molar Masses

What number of atoms of nitrogen are present in 1.00 g of

- MM of $\mathrm{N}_{2} \mathrm{H}_{4}=(14.01 \times 2+1.01 \times 4) \mathrm{g} / \mathrm{mol}=32.06 \mathrm{~g} / \mathrm{mol}$ \# of $\mathrm{N}_{2} \mathrm{H}_{4}$ molecules In 1 g of $\mathrm{N}_{2} \mathrm{H}_{4}=$

$$
1 \mathrm{~g} \mathrm{~N}_{2} \mathrm{H}_{4} \times \frac{1 \mathrm{molN}_{2} \mathrm{H}_{4}}{32.06 \mathrm{~g} \mathrm{~N}_{2} \mathrm{H}_{4}} \times \frac{6.022 \times 10^{23} \mathrm{molec} \mathrm{~N}_{2} \mathrm{H}_{4}}{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{4}}
$$

$\#$ of N atoms in 1 g of $\mathrm{N}_{2} \mathrm{H}_{4}$ molecules $=$

$$
\# \text { of } \mathrm{N}_{2} \mathrm{H}_{4} \text { molecules } \times \frac{2 \mathrm{~N} \text { atoms }}{1 \operatorname{molec} \mathrm{~N}_{2} \mathrm{H}_{4}}
$$

Chapter 3 Section 4
 Determining Empirical Formula from Percent Composition

- Empirical formula : simplest wholenumber ratio of atoms in a formula
- Molecular formula : the "true" ratio of atoms in a formula; often a wholenumber multiple of the empirical formula
- We can determine empirical formulas
 from $\%$ composition data; a good analysis tool.

Combustion Analysis

- Combustion of the sample is one on of the techniques used to analyze for carbon and hydrogen.
It is done by reacting the sample with O_{2} to produce $\mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$, and N_{2}.

Increase in mass of absorbents determines the mass of carbon and hydrogen

$$
\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{O}_{\mathrm{z}}+\mathrm{O}_{2} \text { in excess } \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Limiting reactant 18.8 g$\longrightarrow 27.6 \mathrm{~g}$	Excess		

What is the chemical formula of $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{O}_{\mathrm{z}}$??
(a)

(b) Get mass\% for O by simple subtraction
(c) \qquad Find \# the smallest
whole number ratio \longrightarrow Empirical formula

$$
\begin{aligned}
& \underset{\text { Excess }}{\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{O}_{\mathrm{z}}}+\underset{\text { limiting }}{\text { reactant }} \\
& 18.8 \mathrm{~g} \longrightarrow 27.6 \mathrm{~g} \quad 11.3 \mathrm{~g}
\end{aligned}
$$

What is the empirical formulas of $\mathrm{C}_{x} \mathrm{H}_{y} \mathrm{O}_{z}$??
(a) MM of $\mathrm{CO}_{2}=12.01+2(16.00)=44.01 \mathrm{~g} / \mathrm{mol} \quad \begin{aligned} & \text { Fraction of C } \\ & \text { present by }\end{aligned}$ Mass of C in $\mathrm{CO}_{2}=27.6{\mathrm{~g} C \mathrm{O}_{2}}^{\times\left[12.01 \mathrm{~g} \mathrm{C]} /\left[44.01 \mathrm{geO}_{2}\right] \text { mass in } \mathrm{CO}_{2}\right.}$ $=7.53 \mathrm{~g} \mathrm{C}$.
$\%$ Mass of C in $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{O}_{\mathrm{z}}=7.53 \mathrm{~g} \mathrm{C} / 18.8 \mathrm{~g} \mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{O}_{\mathrm{z}} \times 100 \%=40.1 \% \mathrm{C}$

Similarly:
Mass of H in $\mathrm{H}_{2} \mathrm{O} \rightarrow \%$ Mass of H in $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{O}_{\mathrm{z}} \rightarrow 6.74 \% \mathrm{H}$
(b) Then:
$100 \%-\%$ mass $\mathrm{C}-\%$ mass $\mathrm{H}=\%$ mass $\mathrm{O}=53.2 \% \mathrm{O}$
(c) Assuming having $\underline{100} \mathrm{~g}$ of $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{O}_{z}$, there will be $40.1 \mathrm{~g} \mathrm{C}, 6.74 \mathrm{~g} \mathrm{H}$, and 53.2 g O .
$\# \mathrm{~mol}$ of $\mathrm{C}=40.1 \mathrm{~g} \mathrm{C} \times[1 \mathrm{~mol} \mathrm{C} / 12.01 \mathrm{gC}]=3.34 \mathrm{~mol} \mathrm{C}$ In the same way: we get 6.67 mol H and 3.33 mol O .
(d) Finding the smallest whole number ratio by dividing by 3.2 :
$\mathrm{C} \rightarrow 1.0 \quad \mathrm{H} \rightarrow 2.0 \quad \mathrm{O} \rightarrow 1.0$
The (empirical) formula is $\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{O}_{1}$ or simply $\mathrm{CH}_{2} \mathrm{O}$

Chapter 3 Section 5

Determination of the Molecular Formula

The molecular mass is needed to determine the molecular (actual) formula.
If $\mathrm{MM}=30.03$ then it is $\mathrm{CH}_{2} \mathrm{O}$
If $\mathrm{MM}=60.06$ then it is $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
and so on...

If $C_{x} H_{y} O_{z}$ is glucose ($M M=180.2 \mathrm{~g} / \mathrm{mol}$), then find the molecular formula for glucose.

Chapter 3 Section 5
 Determination of the Chemical Formula from Mass Percentage

A sample was analyzed and found to contain 43.64\% phosphorous and 56.36% oxygen. If the $M M=283.88$ $\mathrm{g} / \mathrm{mol}$, find the empirical and molecular formula.

| Chapter $3 \quad$ Section 6
 Stoichiometric Calculations

- Stoichiometry is

- the accounting or math behind chemistry.
- using balanced chemical equations to predict the quantity of a particular reactant or product.
o Useful web links about stoichiometry:
http://dbhs.wvusd.k12.ca.us/webdocs/Stoichiometry /Stoichiometry.html.
http://www.shodor.org/UNChem/basic/stoic/index.html.
http://www.chem.vt.edu/RVGS/ACT/notes /Study_Guide-Moles_Problems.html.

Chapter 3 Section 6

Stoichiometric Calculations

$$
4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \longrightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)
$$

- What does this reaction mean?
- \# of atoms/molecules?
- \# of moles?
- \# of grams?

Х $4 \mathrm{~g} \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{~g} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{~g} \mathrm{NO}(\mathrm{g})+3 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$17 \mathrm{~g} / \mathrm{mol} \times 4 \mathrm{~mol}$
$32 \mathrm{~g} / \mathrm{mol} \times 5 \mathrm{~mol}$
160 g 228 g

120 g
228 g

Chapter 3 Section 6
 Stoichiometric Calculations

- By now, it should be clear to us that the coefficients in a chemical reaction represent NOT the masses of the molecules BUT the numbers of the molecules (or moles).
- However, in laboratory, the amounts of substances needed can not determined by counting the molecules.

Chapter 3 Section 6

Stoichiometric Calculations

Mole to Mole
Example:
How many moles of urea could be formed from 2.4 moles of ammonia?

-. Stoichiometric Calculations
 Mass to Mass

In mass-to-mass conversion you need to:

1) Balance the chemical equation.
2) Always make the numbers of moles of the reactants and products (the stoichiometric ratios) to be the reference (the key) for your calculations.
${ }_{\uparrow}^{1} \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+\underset{\uparrow}{5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow} 3 \mathrm{CO}_{2}(\mathrm{~g})+\underset{\uparrow}{4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})}$
What mass of O_{2} reacts with 96.1 g of $\mathrm{C}_{3} \mathrm{H}_{8}$?
$96.1 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}$

Chapter 3 Section 6

Stoichiometric Calculations

- What mass of O_{2} reacts with 96.1 g of $\mathrm{C}_{3} \mathrm{H}_{8}$?
- What mass of CO_{2} is produced when 96.1 g of $\mathrm{C}_{3} \mathrm{H}_{8}$ is combusted with O_{2} ?

$$
\mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \rightarrow 3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)
$$

Chapter 3 Section 6

Stoichiometric Calculations

- Exercise:

Which is more effective antacid per gram?

In other words, which one will react with more acid (HCl)?

Chapter 3 Section 6

Stoichiometric Calculations

Solution:
$\mathrm{NaHCO}_{3}(s)+\mathrm{HCl}(a q) \rightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(a q)$
$\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{HCl}(a q) \rightarrow \mathrm{MgCl}_{2}(a q)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$1.00 \mathrm{~g} \mathrm{NaHCO}_{3} \times \frac{1 \mathrm{~mol} \mathrm{NaHCO}_{3}}{84.01 \mathrm{~g} \mathrm{NaHCO}_{3}} \times \frac{1 \mathrm{~mol} \mathrm{HCl}^{1 \mathrm{~mol} \mathrm{NaHCO}_{3}}}{1.19 \times 10^{-2} \mathrm{~mol} \mathrm{HCl}}$
$1.00 \overline{\mathrm{~g} \mathrm{Mg}(\mathrm{OH})_{2}} \times \frac{1 \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2}}{58.32 \mathrm{~g} \mathrm{Mg}(\mathrm{OH})_{2}} \times \frac{2 \mathrm{~mol} \mathrm{HCl}}{1 \mathrm{~mol} \mathrm{Mg}(\mathrm{OH})_{2}}=3.42 \times 10^{-2} \mathrm{~mol} \mathrm{HCl}$

Thus, $\mathrm{Mg}(\mathrm{OH})_{2}$ is better antacid than NaHCO_{3} per one gram.

Limiting Reactants

```
loading...
```

- Limiting reactant: is the reactant that is consumed fully before any other reactants. It is the reactant used for stoichiometric calculations.
- Excess:
is the reactant that is not fully consumed in a chemical reaction.

Also visit:

http://www.science.uwaterloo.ca/~cchieh/cact/c120/limitn.html

Chapter 3 Section 7

Limiting Reactants

Exercise: When 5.0 moles of hydrogen react with 5.0 moles of oxygen, how many moles of water can be produced?

Limiting Reactants

Exercise: If you put equal weights of sodium metal (Na) and chlorine gas $\left(\mathrm{Cl}_{2}\right)$ into a reaction vessel, which is going to be the limiting reagent?
Solution: Consider 1.00 g from each.

$$
2 \mathrm{Na}(s)+\mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{NaCl}(s)
$$

$1.00 \mathrm{~g} \mathrm{Na} \times \frac{1 \mathrm{~mol} \mathrm{Na}}{22.99 \mathrm{~g} \mathrm{Na}}=0.0435 \mathrm{~mol} \mathrm{Na}$
$1.00 \mathrm{~g} \mathrm{Cl}_{2} \times \frac{1 \mathrm{~mol} \mathrm{Cl}_{2}}{70.90 \mathrm{~g} \mathrm{Cl}_{2}}=0.0141 \mathrm{~mol} \mathrm{Cl}_{2}$
1 mole of Cl_{2} needs 2 moles of $\mathrm{Na}=>0.0141 \mathrm{~mol}$ of Cl_{2} need 0.0282 mol of Na . But we have 0.0435 mol of Na (Na is in excess and Cl_{2} is the limiting reactant).

Chapter 3 Section 7

Limiting Reactants

In stoichiometric calculations involving limiting reactants, follow these steps:

1. Balance the chemical equation.
2. Use the key (\# of moles of reactants and products) to make comparison between the amount of each substance involved in the calculations.
3. Determine which reactant is the limiting one.
4. Continue with your calculations based on the limiting reactant.
5. Convert from moles into grams if you need to.

- Ready for another exercise??

Exercise: In one process, 124 g of Al are reacted with 601 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ According to:
$2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}$
Calculate the mass of $\mathrm{Al}_{2} \mathrm{O}_{3}$ formed.

Strategy:

- Make sure the equation is balanced.
- Find out which one is the limiting reactant.
- Use the limiting reactant to get the moles (then grams) for the product $\mathrm{Al}_{2} \mathrm{O}_{3}$.

Chapter 3 Section 7

Limiting Reactants

$$
\underset{124 \mathrm{~g}}{2 \mathrm{Al}}+\underset{601 \mathrm{~g}}{\mathrm{Fe}_{2} \mathrm{O}_{3}} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}
$$

g Al we start with $\rightarrow \mathrm{mol} \mathrm{Al} \rightarrow \mathrm{mol} \mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$ we need.
$124 \mathrm{~g} \mathrm{Al} \times \frac{1 \overline{\mathrm{~mol} A l}}{27.0 \mathrm{gAl}} \times \frac{1 \overline{\mathrm{motFe}}_{2} \mathrm{O}_{3}}{2 \overline{\mathrm{~mol} A t}} \times \frac{160.0 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}}{1 \overline{\mathrm{molFe}}_{2} \mathrm{O}_{3}}=367 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$

124 g Al needs $367 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}$, but we have $601 \mathrm{~g} \mathrm{Fe}_{2} \mathrm{O}_{3}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right.$ is in excess) and Al is the limiting reactant.

Then, $\mathrm{g} \mathrm{Al} \rightarrow \mathrm{mol} \mathrm{Al} \rightarrow \mathrm{mol} \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}$
$124 \mathrm{~g} \mathrm{Al} \times \frac{1 \mathrm{molAl}}{27.0 \mathrm{~g} \mathrm{Al}} \times \frac{1 \mathrm{molAl}_{2} \mathrm{O}_{3}}{2 \mathrm{molAl}} \times \frac{102.0 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}}{1 \mathrm{molAl}_{2} \mathrm{O}_{3}}=234 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}$

Chapter 3 Section 7

Percent Yield

- Theoretical Yield: is the amount of product that would result if all the limiting reagent reacted (very seldom!).
- Actual Yield: is the amount of product actually (experimentally) obtained from the reaction.

$$
\% \text { Yield }=\frac{\text { Actual Yield in grams }}{\text { Theoretical Yield in grams }} \times 100
$$

Example: For the previous reaction, if one obtains 1989 of $\mathrm{Al}_{2} \mathrm{O}_{3}$, what is then the percent yield for $\mathrm{Al}_{2} \mathrm{O}_{3}$?

Solution:

$\%$ Yield $=\frac{198 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}}{234 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}} \times 100 \%=84.6 \%$

Chapter 3 Section 7

Exercise

Consider the following reaction that is used to produce hydrogen cyanide (HCN):

$$
2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{CH}_{4}(\mathrm{~g}) \longrightarrow 2 \mathrm{HCN}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}
$$

If $5.00 \times 10^{3} \mathrm{~kg}$ each of $\mathrm{NH}_{3}, \mathrm{O}_{2}$ and CH_{4} are reacted, what mass of HCN and of $\mathrm{H}_{2} \mathrm{O}$ will be produced, assuming 85.0% yield?

