

7

• •	Chapter 1 Section The Funda	amen	tal SI Units	\$		
	TABLE 1.2	Base SI	Units			
	Base Quantity		Name of Unit	Symbol		
	Length		meter	m		
	Mass		kilogram	kg		
	Time		second	S		
	Electric current		ampere	А		
	Temperature		kelvin	К		
	Amount of substan	nce	mole	mol		
	Luminous intensity	у	candela	cd		
A. Al-Saadi	All other units of measurement can be derived from the above seven fundamental SI units .					

	Chapter 1	1 Section 3	
	Tabl	e of Prefixes in th	e SI System
TABLE '	1.3 Pre	fixes Used with SI Units	
Prefix	Symbol	Meaning	Example
Tera-	Т	$1 \times 10^{12} (1,000,000,000,000)$	1 teragram (Tg) = 1×10^{12} g
Giga-	G	$1 \times 10^{9} (1,000,000,000)$	1 gigawatt (GW) = 1×10^9 W
Mega-	М	$1 \times 10^{6} (1,000,000)$	1 megahertz (MHz) = 1×10^{6} Hz
Kilo-	k	$1 \times 10^{3} (1,000)$	1 kilometer (km) = 1×10^3 m
Deci-	d	$1 \times 10^{-1} (0.1)$	1 deciliter (dL) = 1×10^{-1} L
Centi-	с	$1 \times 10^{-2} (0.01)$	1 centimeter (cm) = 1×10^{-2} m
Milli-	m	$1 \times 10^{-3} (0.001)$	1 millimeter (mm) = 1×10^{-3} m
Micro-	μ	$1 \times 10^{-6} (0.000001)$	1 microliter (μ L) = 1 × 10 ⁻⁶ L
Nano-	n	$1 \times 10^{-9} (0.000000001)$	1 nanosecond (ns) = 1×10^{-9} s
Pico-	р	$1 \times 10^{-12} (0.000000000001)$	1 picogram (pg) = 1×10^{-12} g
		Must be memorized!	

Chapter 1 Densit	Section 3	
• It is the r per unit	nass of substance volume.	Density = $\frac{\text{mass}}{\text{volume}}$
Substance	Physical State	Density (g/cm³)
Oxygen	Gas	0.00133
Hydrogen	Gas	0.000084
Ethanol	Liquid	0.789
Water	Liquid	0.998
Aluminum	Solid	1.47
Iron	Solid	7.87
Mercury	Liquid	13.6
Dr. A. Al-Saadi		32

 Chapter 1 Section 5 Precision and Accuracy Three students are asked to determine the mass of an aspirin tablet. 					
Student A	Student B	Student C			
0.335 g	0.357 g	0.369 g			
0.331 g	0.375 g	0.373 g			
0.333 g	0.338 g	0.371 g			
Average:					
0.333 g	0.357 g	0.371 g			
• True mass was 0.370 grams					

• • • T m	Chapte Pre hree s ass of	er 1 Sec Cision tudent an asp	tion 5 n and os are a dirin tal	Accur sked to plet.	acy detern	nine the	
	Student A	Student B	Student C	0.380 0.370	•	*	8
Measurement 1	0.335 g	0.357 g	0.369 g	0.360		٠	
Measurement 2	0.331 g	0.375 g	0.373 g	⁵⁹ se 0.340	\$	•	
Measurement 3	0.333 g	0.338 g	0.371 g	> 0.330 0.320 0.310	•		 Measured mass True mass
				0.300	A	B Student	С
Dr. A. Al-Saadi	True	mass v	was 0.3	70 gran	ns		49

• • • Char Co • Use	onversion Factors on to convert from	one unit to another.
English-M	etric Equivalents	Example 1:
Length Mass Volume	1 m = 1.094 yd 2.54 cm = 1 in 1 kg = 2.205 lb 453.6 g = 1 lb 1 L = 1.06 gt	How many centimeters are in 25.5 inches (in)? $25.5 \text{ in} \times \frac{2.54 \text{ cm}}{1 \text{ in}} = 64.8 \text{ cm}$ Example 2:
Volume	$1 \text{ ft}^3 = 28.32 \text{ L}$	How many inches are in 25.5 centimeters?
Dr. A. Al-Saadi		$25.5 \text{ cm} \times \frac{1 \text{ in}}{2.54 \text{ cm}} = 10.0 \text{ in}$

Chapter 1 Section 6
Solving Problems Using Dimensional
Analysis
• How many centimeters are in 0.25 megameters?

$$0.25 \text{ megameters} \times \frac{1 \times 10^6 \text{ m}}{1 \text{ megameters}} = 0.25 \times 10^6 \text{ m}$$

 $0.25 \times 10^6 \text{ m} \times \frac{100 \text{ cm}}{1 \text{ meters}} = 0.25 \times 10^8 \text{ cm}$
 $= 2.5 \times 10^7 \text{ cm}$
 $= 25. \times 10^6 \text{ cm}$

• • • Exercise	
• Perform the following mathematical operation and express the result to the correct number of significant figures:	
$\frac{2.526}{3.1} + \frac{0.470}{0.623} + \frac{80.705}{0.4326}$	
Rounding off should be carried out for the <u>final answer</u> and NOT to the intermediate answers. However, you must keep track of the significant figures in the intermediate steps.	
Dr. A. Al-Saadi	54

