Name: D	Date:
---------	-------

- 1. Use Hess's Law to calculate the enthalpy change for the reaction $WO_{3(s)} + 3H_{2(g)} \rightarrow W_{(s)} + 3H_2O_{(g)}$ from the following data: $2W(s) + 3O_2(g) \rightarrow 2WO_3(s) \qquad \Delta H = -1685.4 \text{ kJ}$ $2H_2(g) + O_2(g) \rightarrow 2H_2O(g) \qquad \Delta H = -477.84 \text{ kJ}$ A) 125.9 kJ B) 252.9 kJ C) 364.9 kJ D) 1207.6 kJ
 - E) 207.6 kJ
- 2. Choose the correct equation for the standard enthalpy of formation of CO_(g) (gr indicates graphite).
 - A) $C_{(gr)} + (1/2)O_{2(g)} \rightarrow CO_{(g)}$
 - B) $2C_{(gr)} + O_{2(g)} \rightarrow 2CO_{(g)}$
 - $C) \quad C_{(gr)} + O_{(g)} \rightarrow CO_{(g)}$
 - D) $C_{(gr)} + CO_{2(g)} \rightarrow 2CO_{(g)}$
 - $E) \quad CO_{(g)} \rightarrow C_{(gr)} + O_{(g)}$
- 3. For an orbital, a node is
 - A) an area where there is no chance of finding the electron.
 - B) the midpoint of the orbital.
 - C) an area in which at least one electron is present.
 - D) an area where there is a maximum probability of finding the electron.
 - E) the size of the orbital.
- 4. Determine the end (final) value of *n* in a hydrogen atom transition, if the electron starts in n = 2 and the atom absorbs a photon of light with a frequency of 4.57×10^{14} Hz.
 - A) 3
 - B) 5
 - C) 7
 - D) 4
 - E) 1

- 5. Which one of the following sets of quantum numbers is **correct**?
 - A) $n = 4, l = 3, m_l = -2$
 - B) $n = 2, l = 0, m_l = -1$ C) $n = 2, l = 2, m_l = 0$
 - D) $n = 3, l = 2, m_l = -3$
 - E) $n = 4, l = 2, m_l = +4$
- 6. Calculate the frequency of the green light emitted by a hydrogen atom with a wavelength of 486.1 nm.
 - A) $6.17 \times 10^{14} \text{ s}^{-1}$ B) $1.46 \times 10^{14} \text{ s}^{-1}$ C) $6.86 \times 10^{14} \text{ s}^{-1}$ D) $4.33 \times 10^{14} \text{ s}^{-1}$ E) $1.62 \times 10^{14} \text{ s}^{-12}$
- 7. How many p electrons does Ga atom have?
 - A) 13
 - **B**) 1
 - C) 5
 - D) 10
 - E) 31
- 8. Consider the following reaction: $3Li + Z \rightarrow Li_3Z$. What is the formula for the compound if we substitute magnesium for lithium?
 - A) Mg_3Z_2
 - B) MgZ
 - C) Mg_2Z
 - D) MgZ_2
 - E) Mg₃Z
- 9. Elements with ______ first ionization energies and ______ electron affinities generally form cations.

 - A) low, slightly positive
 B) high, very negative
 C) high, positive or slightly negative
 D) low, very negative

 - E) very high, very positive

10. The electron configuration of indium (In) is

- A) $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^1$
- B) $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^{1}5d^{10}$
- C) $1s^22s^22p^63s^23p^63d^{10}4s^24d^{10}4p^1$
- D) 1s²3s²2p⁶3s²3p⁶4s²4p⁶4d¹⁰5s²5d¹⁰5p¹
- E) $1s^22s^22p^63s^23p^63d^{10}4s^24p^65s^25p^1$
- 11. Choose the element with the highest first ionization energy (IE₁).
 - A) P
 - B) S
 - C) Na
 - D) Mg
 - E) Al
- 12. Place the following elements (As, O, Br) in order of increasing atomic radius.
 - A) O < Br < As
 - B) As < Br < O
 - C) O < As < Br
 - D) Br < As < O
 - $E) \quad As < O < Br$
- 13. The lattice energy of MgCl₂ is the energy change for which one of the following processes?
 - A) $\operatorname{Mg}^{2+}(g) + 2\operatorname{Cl}^{-}(g) \to \operatorname{MgCl}_{2}(s)$
 - B) $Mg(s) + Cl_2(g) \rightarrow MgCl_2(s)$
 - C) $Mg(g) + 2Cl(g) \rightarrow MgCl_2(s)$
 - D) $Mg^{2+}(s) + 2Cl^{-}(g) \rightarrow MgCl_{2}(g)$
 - E) $MgCl_2(aq) \rightarrow MgCl_2(s)$

14. Which one of the following Lewis structures is definitely incorrect?

- 15. Given the following bond energies:
 - C-C347 kJ/mol C=C614 kJ/mol C-O358 kJ/mol C=O799 kJ/mol C-H413 kJ/mol O-H463 kJ/mol

estimate ΔH for the reaction $H_2O_2 + CH_3OH \rightarrow H_2CO + 2H_2O$.

- A) -345 kJ
- B) -199 kJ
- C) -105 kJ
- D) +581 kJ
- E) +299 kJ
- 16. The hybridization of I in IF_3 molecule is
 - A) dsp^3
 - B) d^2sp^3
 - C) sp^3
 - D) sp
 - E) sp^2

17. Which of the following statements is TRUE?

- A) When two atomic orbitals come together to form two molecular orbitals, bonding orbitals will be lower in energy compared to the anti-bonding orbitals.
- B) Electrons placed in antibonding orbitals stabilize the ion/molecule.
- C) The total number of molecular orbitals formed is not always equal to the number of atomic orbitals in the set.
- D) The total number of antibonding orbitals is always less than the number of bonding orbitals in a given ion/molecule.
- E) Electrons placed in antibonding orbitals will increase the bond order.
- 18. Use VSEPR theory to decide which one of the following molecules or ion will definitely have at least one 90° bond angle in it. (The central atom in each molecule is underlined).
 A) PCl₅
 - $\begin{array}{c} A) \quad \underline{PC1_5} \\ B) \quad \underline{A1C1_5} \end{array}$
 - $\underline{Al}Cl^4$
 - C) <u>N</u>H₃
 - D) <u>C</u>O₂
 - E) H₂O

19. Which one of the following molecules has a zero net dipole moment?

- A) SO₃
- B) CO
- C) CH₂Cl₂
- D) SO_2
- E) NH₃
- 20. The number of pi bonds in the oxalate ion $(C_2O_4^{-2})$ is
 - A) 2
 - **B**) 1
 - C) 0
 - D) 3
 - E) 4

Answer Key

- 1. A
- 2. A
- 3. A 4. A
- 4. A 5. A
- 6. A
- 7. A
- 8. A
- 9. A
- 10. A
- 11. A
- 12. A
- 13. A 14. A
- 14. A
- 16. A
- 17. A
- 18. A
- 19. A
- 20. A