Name: \qquad Date: \qquad

1. Use Hess's Law to calculate the enthalpy change for the reaction

$$
\mathrm{WO}_{3(\mathrm{~s})}+3 \mathrm{H}_{2(g)} \rightarrow \mathrm{W}_{(\mathrm{s})}+3 \mathrm{H}_{2} \mathrm{O}_{(g)}
$$

from the following data:

$$
\begin{array}{ll}
2 \mathrm{~W}(s)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{WO}_{3}(s) & \Delta H=-1685.4 \mathrm{~kJ} \\
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g) & \Delta H=-477.84 \mathrm{~kJ}
\end{array}
$$

A) 125.9 kJ
B) 252.9 kJ
C) 364.9 kJ
D) 1207.6 kJ
E) 207.6 kJ
2. Choose the correct equation for the standard enthalpy of formation of $\mathrm{CO}_{(\mathrm{g})}$ (gr indicates graphite).
A) $\mathrm{C}_{(\mathrm{gr})}+(1 / 2) \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{(\mathrm{g})}$
B) $2 \mathrm{C}_{(\mathrm{gr})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{(\mathrm{g})}$
C) $\mathrm{C}_{(\mathrm{gr})}+\mathrm{O}_{(\mathrm{g})} \rightarrow \mathrm{CO}_{(\mathrm{g})}$
D) $\mathrm{C}_{(\mathrm{gr})}+\mathrm{CO}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{(\mathrm{g})}$
E) $\quad \mathrm{CO}_{(\mathrm{g})} \rightarrow \mathrm{C}_{(\mathrm{gr})}+\mathrm{O}_{(\mathrm{g})}$
3. For an orbital, a node is
A) an area where there is no chance of finding the electron.
B) the midpoint of the orbital.
C) an area in which at least one electron is present.
D) an area where there is a maximum probability of finding the electron.
E) the size of the orbital.
4. Determine the end (final) value of n in a hydrogen atom transition, if the electron starts in $n=2$ and the atom absorbs a photon of light with a frequency of $4.57 \times 10^{14} \mathrm{~Hz}$.
A) 3
B) 5
C) 7
D) 4
E) 1
5. Which one of the following sets of quantum numbers is correct?
A) $n=4, l=3, m_{l}=-2$
B) $n=2, l=0, \quad m_{l}=-1$
C) $n=2, l=2, \quad m_{l}=0$
D) $n=3, l=2, \quad m_{l}=-3$
E) $n=4, l=2, m_{l}=+4$
6. Calculate the frequency of the green light emitted by a hydrogen atom with a wavelength of 486.1 nm .
A) $6.17 \times 10^{14} \mathrm{~s}^{-1}$
B) $1.46 \times 10^{14} \mathrm{~s}^{-1}$
C) $6.86 \times 10^{14} \mathrm{~s}^{-1}$
D) $4.33 \times 10^{14} \mathrm{~s}^{-1}$
E) $1.62 \times 10^{14} \mathrm{~s}^{-1}$
7. How many p electrons does Ga atom have?
A) 13
B) 1
C) 5
D) 10
E) 31
8. Consider the following reaction: $\quad 3 \mathrm{Li}+\mathrm{Z} \rightarrow \mathrm{Li}_{3} \mathrm{Z}$. What is the formula for the compound if we substitute magnesium for lithium?
A) $\mathrm{Mg}_{3} \mathrm{Z}_{2}$
B) MgZ
C) $\mathrm{Mg}_{2} \mathrm{Z}$
D) MgZ_{2}
E) $\mathrm{Mg}_{3} \mathrm{Z}$
9. Elements with \qquad first ionization energies and \qquad electron affinities generally form cations.
A) low,
B) high, slightly positive
C) high, very negative
D) low, positive or slightly negative
E) very high,
very negative
very positive
10. The electron configuration of indium (In) is
A) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{1}$
B) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 p^{15} d^{10}$
C) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 d^{10} 4 p^{1}$
D) $1 s^{2} 3 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 4 p^{6} 4 d^{10} 5 s^{2} 5 d^{10} 5 p^{1}$
E) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{2} 4 p^{6} 5 s^{2} 5 p^{1}$
11. Choose the element with the highest first ionization energy (IE_{1}).
A) P
B) S
C) Na
D) Mg
E) Al
12. Place the following elements ($\mathrm{As}, \mathrm{O}, \mathrm{Br}$) in order of increasing atomic radius.
A) $\mathrm{O}<\mathrm{Br}<\mathrm{As}$
B) $\mathrm{As}<\mathrm{Br}<\mathrm{O}$
C) $\mathrm{O}<\mathrm{As}<\mathrm{Br}$
D) $\mathrm{Br}<\mathrm{As}<\mathrm{O}$
E) $\mathrm{As}<\mathbf{O}<\mathrm{Br}$
13. The lattice energy of MgCl_{2} is the energy change for which one of the following processes?
A) $\mathrm{Mg}^{2+}(g)+2 \mathrm{Cl}^{-}(g) \rightarrow \mathrm{MgCl}_{2}(s)$
B) $\mathrm{Mg}(s)+\mathrm{Cl}_{2}(g) \rightarrow \mathrm{MgCl}_{2}(s)$
C) $\mathrm{Mg}(g)+2 \mathrm{Cl}(g) \rightarrow \mathrm{MgCl}_{2}(s)$
D) $\mathrm{Mg}^{2+}(\mathrm{s})+2 \mathrm{Cl}^{-}(g) \rightarrow \mathrm{MgCl}_{2}(g)$
E) $\mathrm{MgCl}_{2}(a q) \rightarrow \mathrm{MgCl}_{2}(s)$
14. Which one of the following Lewis structures is definitely incorrect?
a. NO
b. HCN
c. $\mathrm{NO}_{2}{ }^{-}$
d. $\mathrm{SO}_{3}{ }^{2-}$
e. PCl_{5}

A) b
B) a
C) c
D) d
E) e

15. Given the following bond energies:

$$
\begin{aligned}
& \mathrm{C}-\mathrm{C} 347 \mathrm{~kJ} / \mathrm{mol} \\
& \mathrm{C}=\mathrm{C} 614 \mathrm{~kJ} / \mathrm{mol} \\
& \mathrm{C}-\mathrm{O} 358 \mathrm{~kJ} / \mathrm{mol} \\
& \mathrm{C}=\mathrm{O} 799 \mathrm{~kJ} / \mathrm{mol} \\
& \mathrm{C}-\mathrm{H} 413 \mathrm{~kJ} / \mathrm{mol} \\
& \mathrm{O}-\mathrm{H} 463 \mathrm{~kJ} / \mathrm{mol} \\
& \mathrm{O}-\mathrm{O} 146 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

estimate ΔH for the reaction $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{CO}+2 \mathrm{H}_{2} \mathrm{O}$.
A) -345 kJ
B) -199 kJ
C) -105 kJ
D) +581 kJ
E) +299 kJ
16. The hybridization of I in IF_{3} molecule is
A) dsp^{3}
B) $\mathrm{d}^{2} \mathrm{sp}^{3}$
C) sp^{3}
D) sp
E) sp^{2}
17. Which of the following statements is TRUE?
A) When two atomic orbitals come together to form two molecular orbitals, bonding orbitals will be lower in energy compared to the anti-bonding orbitals.
B) Electrons placed in antibonding orbitals stabilize the ion/molecule.
C) The total number of molecular orbitals formed is not always equal to the number of atomic orbitals in the set.
D) The total number of antibonding orbitals is always less than the number of bonding orbitals in a given ion/molecule.
E) Electrons placed in antibonding orbitals will increase the bond order.
18. Use VSEPR theory to decide which one of the following molecules or ion will definitely have at least one 90° bond angle in it. (The central atom in each molecule is underlined).
A) PCl_{5}
B) AlCl^{-}
C) NH_{3}
D) CO_{2}
E) $\mathrm{H}_{2} \underline{\mathrm{O}}$
19. Which one of the following molecules has a zero net dipole moment?
A) SO_{3}
B) CO
C) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
D) SO_{2}
E) NH_{3}
20. The number of pi bonds in the oxalate ion $\left(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right)$ is
A) 2
B) 1
C) 0
D) 3
E) 4

Answer Key

1. A
2. A
3. A
4. A
5. A
6. A
7. A
8. A
9. A
10. A
11. A
12. A
13. A
14. A
15. A
16. A
17. A
18. A
19. A
20. A
