Name: \qquad Date: \qquad

1. When two pure substances are mixed to form a solution, then always
A) there is an increase in entropy.
B) there is a decrease in entropy.
C) entropy is conserved.
D) heat is released.
E) heat is absorbed.
2. What is the molarity of a solution that is 26.0% by mass phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ and that has a density of $1.155 \mathrm{~g} / \mathrm{mL}$?
A) 3.06 M
B) 3.00 M
C) 2.30 M
D) $2.30 \times 10^{-3} \mathrm{M}$
E) 0.300 M
3. The solubility of nitrogen gas at $25^{\circ} \mathrm{C}$ and a nitrogen pressure of 522 mmHg is $4.7 \times$ $10^{-4} \mathrm{~mol} / \mathrm{L}$. What is the value of the Henry's Law constant in $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~atm}^{-1}$?
A) $6.8 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~atm}^{-1}$
B) $4.7 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~atm}^{-1}$
C) $3.2 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~atm}^{-1}$
D) $9.0 \times 10^{-7} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~atm}^{-1}$
E) $1.5 \times 10^{3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~atm}^{-1}$
4. What is the boiling point of a solution prepared by dissolving 375 g of sulfur $\left(\mathrm{S}_{8}, \mathrm{MW}=\right.$ $256.5 \mathrm{~g} / \mathrm{mol})$ in 1250 g of CCl_{4} ? $\left(K_{\mathrm{b}}=5.05^{\circ} \mathrm{C} / \mathrm{m}\right.$, boiling point of pure $\left.\mathrm{CCl}_{4}=76.7^{\circ} \mathrm{C}\right)$?
A) $82.6^{\circ} \mathrm{C}$
B) $70.8^{\circ} \mathrm{C}$
C) $75.2^{\circ} \mathrm{C}$
D) $81.2^{\circ} \mathrm{C}$
E) $88.4^{\circ} \mathrm{C}$
5. A $0.100 \mathrm{~m} \mathrm{~K}_{2} \mathrm{SO}_{4}$ aqueous solution has a freezing point of $-0.43^{\circ} \mathrm{C}$. What is the van't Hoff factor for this solution? $K_{f}=1.86^{\circ} \mathrm{C} / \mathrm{m}$
A) 2.3
B) 3.0
C) 3.3
D) 1.7
E) 3.2
6. At $40^{\circ} \mathrm{C}$, heptane has a vapor pressure of 92.0 torr and octane has a vapor pressure of 31.2 torr. Assuming ideal behavior, what is the vapor pressure of a solution that contains twice as many moles of heptane as octane at $40^{\circ} \mathrm{C}$?
A) 71.7 torr
B) 61.6 torr
C) 51.5 torr
D) 76.8 torr
E) 121 torr
7. What types of intermolecular forces exist between hydrogen fluoride molecules?
I. London forces;
II. dipole-dipole interactions;
III. hydrogen bonding;
IV. ion-dipole interactions
A) I, II, and III
B) I, II, and IV
C) II, IIII and IV
D) all of them
E) I and III
8. Arrange the following in order of increasing boiling point: $\mathrm{Cl}_{2}, \mathrm{HI}, \mathrm{Br}_{2}, \mathrm{KI}$
A) $\mathrm{Cl}_{2}<\mathrm{Br}_{2}<\mathrm{HI}<\mathrm{KI}$
B) $\mathrm{KI}<\mathrm{Br}_{2}<\mathrm{Cl}_{2}<\mathrm{HI}$
C) $\mathrm{Br}_{2}<\mathrm{Cl}_{2}<\mathrm{KI}<\mathrm{HI}$
D) $\mathrm{HI}<\mathrm{Cl}_{2}<\mathrm{Br}_{2}<\mathrm{KI}$
E) $\mathrm{Br}_{2}<\mathrm{KI}<\mathrm{HI}<\mathrm{Cl}_{2}$
9. The molar enthalpy of vaporization of BBr_{3} is $30.5 \mathrm{~kJ} / \mathrm{mol}$, and its normal boiling point is $91.0^{\circ} \mathrm{C}$. What is the vapor pressure of BBr_{3} at $20.0^{\circ} \mathrm{C}$?
A) 66.1 torr
B) 5.31 torr
C) 53.1 torr
D) 311 torr
E) 113 torr
10. Which of the following should have the highest viscosity at a given temperature?

B) $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$
C)

D)

E) $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{3}$
11. Platinum (Pt) has a face-centered cubic crystal structure and a density of $21.5 \mathrm{~g} / \mathrm{cm}^{3}$. What is the radius of the platinum atom?
A) 139 pm
B) 196 pm
C) 277 pm
D) 96.0 pm
E) 19.6 pm
12. For the phase diagram shown below, if the substance is held at constant temp. of $-\mathbf{4 0 ^ { \circ }} \mathrm{C}$, the phase change that would occur with a decrease of pressure from 30 atm to 1 atm is:

A) Sublimation.
B) Melting.
C) Vaporization.
D) Deposition.
E) Freezing.
13. A sample of a gas is contained in a 15.0 L cylinder. The temperature is increased from $100^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$. The ratio of final pressure to initial pressure is
A) 1.13
B) 1.00
C) 0.820
D) 0.667
E) 1.50
14. What is the molecular weight of a gas that has a density of $5.75 \times 10^{-3} \mathrm{~g} / \mathrm{cm}^{3}$ at STP in $\mathrm{g} / \mathrm{mol}$?
A) 129
B) 141
C) 578
D) 3.90
E) 115
15. Hydrogen cyanide (HCN) can be produced according to the following reaction:

$$
2 \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCN}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

What volume of hydrogen cyanide gas can be obtained from a reaction of $20.0 \mathrm{LCH}_{4}, 20.0 \mathrm{~L}$ NH_{3}, and $20.0 \mathrm{~L} \mathrm{O}_{2}$ gases at the same temperature and pressure?
A) 13.3 L
B) 20.0 L
C) 10.0 L
D) 30.0 L
E) 15.0 L
16. A compound composed of carbon, hydrogen, and chlorine effuses through a pinhole 0.411 times as fast as neon (Ne). Select the correct molecular formula for the compound.
A) CHCl_{3}
B) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
C) $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{2}$
D) $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$
E) CCl_{4}
17. A gaseous mixture containing $19.98 \mathrm{~g} \mathrm{Ar}, 30.00 \mathrm{~g} \mathrm{NO}$, and $154.0 \mathrm{~g} \mathrm{CO}_{2}$ has a total pressure of 7.0 atm . What is the partial pressure of CO_{2} in the mixture?
A) 3.7×10^{3} torr
B) 1.6×10^{3} torr
C) 2.7×10^{3} torr
D) 1.8 torr
E) 3.2 torr
18. A sample of 2.50 moles of NH_{3} gas occupies 4.20 L at $47^{\circ} \mathrm{C}$. Calculate the pressure of the gas (in $\mathrm{atm})$ using van der Waals equation. ($\mathrm{a}=4.17 \mathrm{~atm} \mathrm{x} \mathrm{L}{ }^{2} / \mathrm{mol}^{2}$ and $\left.\mathrm{b}=0.0371 \mathrm{~L} / \mathrm{mol}\right)$
A) 14.5 atm
B) 65.7 atm
C) 1.48 atm
D) 4.11 atm
E) 6.11 atm
19. A star is estimated to have a mass of $2.0 \times 10^{36} \mathrm{~kg}$ Assuming it to be a sphere of average radius $7.0 \times 10^{5} \mathrm{~km}$, calculate the average density of the star in $\mathrm{g} / \mathrm{cm}^{3} .\left(V=\frac{4}{3} \pi r^{3}\right.$)
A) 1.4×10^{6}
B) 1.3×10^{33}
C) 1.6×10^{5}
D) 1.3×10^{9}
E) 1.3×10^{8}
20. Read the length of the metal bar with the correct number of significant figures.

A) 15.0 cm
B) 15 cm
C) 15.00 cm
D) 14.9 cm
E) 14.90 cm
21. What is the correct chemical formula for the diiodine pentaoxide?
A) $\mathrm{I}_{2} \mathrm{O}_{5}$
B) IO_{5}
C) $2 \mathrm{IO}_{5}$
D) $\mathrm{I}_{5} \mathrm{O}_{2}$
E) $\left(\mathrm{IO}_{5}\right)_{2}$
22. Rutherford bombarded gold foil with alpha (α) particles and found that a small percentage of the particles were deflected. Which of the following was not considered by the model he proposed for the structure of atoms?
A) the total mass of the atom
B) the small size of the nucleus
C) the charge on the nucleus
D) the existence of protons
E) the presence of electrons outside the nucleus
23. What is the coefficient of O_{2} when the following combustion reaction is balanced using the smallest set of whole numbers?

$$
-\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2}+\ldots \mathrm{O}_{2} \rightarrow-\mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}
$$

A) 26
B) 9
C) 27
D) 30
E) 15
24. Combustion analysis of 63.8 mg of a compound containing only C, H and O produced 145.0 mg of CO_{2} and 59.38 mg of $\mathrm{H}_{2} \mathrm{O}$. What is the empirical formula for the compound?
A) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
B) $\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{O}$
C) CHO
D) $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}$
E) $\mathrm{C}_{6} \mathrm{HO}_{3}$
25. Ammonia will react with fluorine according to the following unbalanced equation:

$$
\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{~F}_{4}(\mathrm{~g})+\mathrm{HF}(\mathrm{~g})
$$

How many moles of NH_{3} are needed to react completely with 0.517 kg of F_{2} ?
A) 5.44 mol
B) 34.0 mol
C) 27.2 mol
D) 6.80 mol
E) 2.27 mol
26. Choose the statement below that is TRUE.
A) A weak acid solution consists of mostly nonionized acid molecules.
B) The term "strong electrolyte" means that the substance is extremely reactive.
C) A strong acid solution consists mainly of partially ionized acid molecules.
D) The term "weak electrolyte" means that the substance is inert.
E) A molecular compound that does not ionize in solution is considered a strong electrolyte.
27.

Given the reaction

$$
2 \mathrm{MnO}_{4}^{-}+5 \mathrm{H}_{2} \mathrm{O}_{2}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+8 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{O}_{2}
$$

determine the total number of electrons involved in this redox reaction in the Mn .
A) 10
B) 8
C) 6
D) 5
E) 2
28.

You have 75.0 mL of a 2.50 M solution of $\mathrm{Na}_{2} \mathrm{CrO}_{4}(\mathrm{aq})$. You also have 125 mL of a 2.50 M solution of $\mathrm{AgNO}_{3}(\mathrm{aq})$. Calculate the $\mathrm{CrO}_{4}{ }^{2-}$ ion concentrations when the two solutions are added together.
A) 0.156 M
B) 0.188 M
C) 0.938 M
D) 2.50 M
E) 0 M
29. A system which undergoes no change in heat (i.e., $q=0$) and does work on the surroundings has:
A) $w<0, \Delta U<0$
B) $w<0, \Delta U=0$
C) $\mathrm{w}>0, \Delta U>0$
D) $w>0, \Delta U<0$
E) $w<0, \Delta U>0$
30. When 50.0 mL of 0.500 M HCl at $25.00^{\circ} \mathrm{C}$ is added to 50.0 mL of 0.500 M NaOH at $25.00^{\circ} \mathrm{C}$ in a coffee cup calorimeter, the temperature of the mixture rises to $28.20^{\circ} \mathrm{C}$. What is the heat of reaction per mole of acid? Assume the mixture has a specific heat capacity of $4.18 \mathrm{~J} /\left(\mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right)$ and that the densities of the reactant solutions are both $1.00 \mathrm{~g} / \mathrm{mL}$.
A) 54 kJ
B) 27 kJ
C) 670 J
D) 1300 J
E) 130 kJ
31. Calculate the wavelength associated with a ${ }^{20} \mathrm{Ne}^{+}$ion moving at a velocity of 2.0×10^{5} m / s. The atomic mass of $\mathrm{Ne}-20$ is $19.992 \mathrm{amu}\left(1 \mathrm{amu}=1.66 \times 10^{-24} \mathrm{~g}\right)$.
A) $1.0 \times 10^{-13} \mathrm{~m}$
B) $1.0 \times 10^{-16} \mathrm{~m}$
C) $1.0 \times 10^{-18} \mathrm{~m}$
D) $9.7 \times 10^{12} \mathrm{~m}$
E) $2.0 \times 10^{-13} \mathrm{~cm}$
32. Which one of the following sets of quantum numbers is NOT possible?

	n	l	m_{l}	m_{s}
I	4	3	-2	$+1 / 2$
II	3	0	1	$-1 / 2$
III	3	0	0	$+1 / 2$
IV	2	1	1	$-1 / 2$
V	2	0	0	$+1 / 2$

A) II
B) I
C) III
D) IV
E) V
33. If the radius of atom X is greater than the radius of atom Y (assuming X and Y atoms are in the same period), then it is also likely that
A) X has greater metallic characters than Y does.
B) X has a larger electron affinity than Y does.
C) X has a larger effective nuclear charge than Y does.
D) X has a larger first ionization energy than Y does.
E) X is a poorer conductor of electricity than Y when in the solid state.
34. What is the maximum number of electrons having the quantum numbers $n=3, l=1$ and $m_{\mathrm{s}}=1 / 2$?
A) 3
B) 6
C) 9
D) 18
E) 12
35. Use the Born-Haber cycle to calculate the lattice energy of $\mathrm{LiCl}(\mathrm{s})$ given the following data:
$\Delta \mathrm{H}$ (sublimation) $\mathrm{Li}=155.2 \mathrm{~kJ} / \mathrm{mol} ; \mathrm{IE}_{1}(\mathrm{Li})=520 \mathrm{~kJ} / \mathrm{mol}$; Bond energy $(\mathrm{Cl}-\mathrm{Cl})=$ $242.8 \mathrm{~kJ} / \mathrm{mol}$;
$\mathrm{EA}(\mathrm{Cl})=348 \mathrm{~kJ} / \mathrm{mol} ; \Delta \mathrm{H}_{\mathrm{f}}(\mathrm{LiCl}(\mathrm{s}))=-408.8 \mathrm{~kJ} / \mathrm{mol}$.
A) $857 \mathrm{~kJ} / \mathrm{mol}$
B) $-40 \mathrm{~kJ} / \mathrm{mol}$
C) $40 \mathrm{~kJ} / \mathrm{mol}$
D) $736 \mathrm{~kJ} / \mathrm{mol}$
E) $1553 \mathrm{~kJ} / \mathrm{mol}$
36. What is the formal charge on phosphorus in a Lewis structure for the phosphate ion in which all the atoms satisfy the octet rule?
A) +1
B) +2
C) -2
D) -1
E) 0
37. Arrange calcium, rubidium, sulfur, and arsenic in order of decreasing electronegativity.
A) $\mathrm{S}>\mathrm{As}>\mathrm{Ca}>\mathrm{Rb}$
B) $\mathrm{S}>\mathrm{As}>\mathrm{Rb}>\mathrm{Ca}$
C) $\mathrm{As}>\mathrm{S}>\mathrm{Rb}>\mathrm{Ca}$
D) $\mathrm{As}>\mathrm{S}>\mathrm{Ca}>\mathrm{Rb}$
E) $\mathrm{Ca}>\mathrm{Rb}>\mathrm{As}>\mathrm{S}$
38. Use VSEPR theory to predict the electron domain geometry around iodine, the central atom in the ion IF^{2}.
A) trigonal bipyramidal
B) octahedral
C) tetrahedral
D) trigonal planar
E) bent
39. List the following molecules/ions in order of increasing bond order:
$\mathrm{C}_{2}^{+}, \mathrm{F}_{2}^{-} \mathrm{CN}, \mathrm{OF}^{-}$
A) $\mathrm{F}_{2}^{-}<\mathrm{OF}^{-}<\mathrm{C}_{2}^{+}<\mathrm{CN}$
B) $\mathrm{F}_{2}^{-}<\mathrm{C}_{2}^{+}<\mathrm{CN}<\mathrm{OF}^{-}$
C) $\mathrm{CN}<\mathrm{C}_{2}^{+}<\mathrm{OF}^{-}<\mathrm{F}_{2}^{-}$
D) $\mathrm{C}_{2}^{+}<\mathrm{OF}^{-}<\mathrm{F}_{2}^{-}<\mathrm{CN}$
E) $\mathrm{C}_{2}^{+}<\mathrm{CN}<\mathrm{OF}^{-}<\mathrm{F}_{2}^{-}$
40. Which of the following statements about the molecule BN is false?
A) Bond length will increase by adding one electron.
B) Its bond order is two.
C) The total number of electrons is 12 .
D) It is diamagnetic
E) Removal of one electron will decrease the dissociation energy.

Answer Key

1. A
2. A
3. A
4. A
5. A
6. A
7. A
8. A
9. A
10. A
11. A
12. A
13. A
14. A
15. A
16. A
17. A
18. A
19. A
20. A
21. A
22. A
23. A
24. A
25. A
26. A
27. A
28. A
29. A
30. A
31. A
32. A
33. A
34. A
35. A
36. A
37. A
38. A
39. A
40. A
