CHEM 102

General Chemistry II

DR. ABDUL MUTTALEB J ABER

SPRING 08/09 TERM 082

We ak	Lec.		Date	Chapt er	Sec.	Lab.	Homework
1	01	Sat	Feb. 28	12	1,2	No Lab	
	02	$\begin{aligned} & \text { Mo } \\ & \mathrm{n} \end{aligned}$	March 02	12	3,4		
	03	We d	04	12	5,6,7		
	04	Thu	05	12	7,8		
2	05	Sat	07	13	1,2	Introuction to Lab: Check in, Safety rules etc. Network system introduction	Chapter 12: 18,24,30,40,48,56,61,64. Mar. 10, Dropping course(s) without permanent record
	06	Mo $1 \mathrm{n}$	09	13	3,4		
	07	We d	11	13	5,6		
3	09	Sat	14	13	7	Lab \# 1 Exp \# 22: Factors Affecting Reaction Rates (p. 257).	Chapter 13: $22,30,38,42,46,52,62,66$
	08	$\begin{aligned} & \text { Mo } \\ & \mathrm{n} \end{aligned}$	16	14	1,2		
	10	We d	18	14	3,4,5		

4	11	Sat	21	14	6,7,8	Lab \# 2 * Exp \# 23: Determination of a Rate Law (p.267).	Chapter 14: 30,36,48,54,58,66,82,94,100 ,104,110,122,124.
	12	$\begin{aligned} & \mathrm{Mo} \\ & \mathrm{n} \end{aligned}$	23	14	8,9		
5	14	Sat	28	15	1,2	Lab \# 3 * Exp \# 25: An Equilibrium Constant (p. 293)	Chapter 15: 24,28,46,58,60,78,82,88,10 8.
	15	Mo n	30	15	3,4		
	16	We \mathbf{d}	April 01	15	5,6		

6	17	Sat	04	15	7,8	Lab \# 4 Exp \# 29: Acids, Bases and Salts; pH (p. 169)	Maj. I-Old Exams April 12, Dropping with "W" any course
	18	$\begin{array}{\|l} \mathrm{Mo} \\ \mathrm{n} \\ \hline \end{array}$	06	12-15	Revie w		
	19	$\begin{aligned} & \text { We } \\ & \text { d } \end{aligned}$	08	16	1,2,3		
	Maj 1 (Ch 12 -1.5) Wed. April 08, 7:00 p.m.						
7	20	Sat	11	16	4,5	Lab \# 5 Exp \# 29: Molar Solubility: Common-Ion Effect (p. 331)	Chapter 16:26,40,46,50,56,66,70.
	21	$\begin{aligned} & \text { Mo } \\ & \mathrm{n} \end{aligned}$	13	16	6,7		
	22	We d	15	16	8,9		
8	23	Sat	18	17	1,2	Lab \# 6 Exp \# 15: Bleach Analysis (p. 191)	$\begin{aligned} & \text { Chapter 17: } \\ & \text { 16,30,40,48,58,64,84,86,88. } \end{aligned}$
	24	$\begin{gathered} \text { Mo } \\ \mathrm{n} \end{gathered}$	20	17	3		
	25	We d	22	17	4,5		
Mioterm Vacation Apri 25-29							

9	26	Sat	May 02	17	5,6	Lab \# 7 Exp \#32: Galvanic Cells (p.357)	Chapter 18: 10,12,22,36,38,42. May 10, withdrawal from all courses with grade of "W"
	27	$\begin{aligned} & \text { Mo } \\ & \mathrm{n} \end{aligned}$	04	17	7,8		
	28	We d	06	18	1,2		
10	29	Sat	09	18	3,4	$\text { Lab \# } 8$ Exp \# 26: Antacid Analysis (p. 305).	Chapter 19:\| 2,14,18,30,32,42,46.
	30	$\begin{array}{\|c} \hline \mathrm{Mo} \\ \mathrm{n} \\ \hline \end{array}$	11	18	5,6		
	31	We d	13	18	6,7		
11	32	Sat	16	$\begin{gathered} 16- \\ 18 \end{gathered}$	Revi ew	Lab \# 9 * Exp \# 16: Vitamin C Analysis (p. 201).	Maj. II-Old Exams
	Maj 2 (Ch 16-18) Sat. May 16, 7:00 p.m.						
	33	$\begin{aligned} & \text { Mo } \\ & \mathrm{n} \end{aligned}$	18	19	$\begin{gathered} 1 \text { to } \\ 6 \end{gathered}$		
	34	We d	20	$\begin{aligned} & 19- \\ & 20 \end{aligned}$	$\begin{gathered} 1 \text { to } \\ 6 \end{gathered}$		

12	35	Sat	23	20	$\begin{gathered} 1 \text { to } \\ 6 \end{gathered}$	Lab \# 10 * Exp \# 28: Aspirin Analysis (p. 323).	Chapter 20:$8,12,14,34,38,42 .$
	36	Mo n	25	21	1,2		
	37	$\begin{aligned} & \text { We } \\ & \text { d } \end{aligned}$	27	21	3		
13	38	Sat	30	21	4,5	Lab \# 11 Exp \# 38: Transition Metal Chemistry (p. 423).	Chapter 21: 14,16,26,32,36,40,50,54. June 6, withdrawal with grade of "WP/WF"
	39	$\begin{aligned} & \text { Mo } \\ & \mathrm{n} \end{aligned}$	June 01	21	5,6		
	40	$\begin{aligned} & \text { We } \\ & \text { d } \end{aligned}$	03	22	1		
14	41	Sat	06	22	2	Lab Test	Chapter 22:$\begin{array}{\|l} 25,32,42,52,62,25,32,42, \\ 52,62,72 . \end{array}$
	42	$\begin{aligned} & \mathrm{Mo} \\ & \mathrm{n} \end{aligned}$	08	22	3		
	43	$\begin{aligned} & \text { We } \\ & \text { d } \end{aligned}$	10	22	4		
15		Sat				No Lab	Final-Old Exams
	44		13	22	5		
	45	$\begin{aligned} & \text { Mo } \\ & \mathrm{n} \end{aligned}$	15	$\begin{aligned} & 12- \\ & 22 \end{aligned}$	Revi ew		

CHEPTER 12

Chemical Kinetics

Chemistry of reaction rates

Main Topics

- Introduction
- Reaction rates
- Rate Laws
- Determining the form of the rate law
- The integrated rate law
- Reaction mechanisms
- A model for chemical kinetics
- Catalysis

Kinetics

Introduction

- KINETICS - the study of REACTION RATES and their relation to the way the reaction proceeds, i.e., its MECHANISM.
- Spontaneous reactions are reactions that will happen - but we can't tell how fast.
- Diamond will spontaneously turn to graphite - eventually but very slow
- Reaction mechanism- the steps by which a reaction takes place.

12.1 Reaction Rates

- Change in concentration (Δ conc) of a reactant or product per unit time
Rate $=$ conc of A at time $t_{2}-$ conc of A at time t_{1}

$$
t_{2}-t_{1}
$$

$$
=\frac{\Delta[\mathrm{A}]}{\Delta t}
$$

- The rate could be positive or negative whether the material being produced or consumed
- The rate is usually expressed as positive thus we use the negative sign for materials to be consumed $-\Delta[A] / \Delta t$

Reaction rate and stoichiometry of chemical reaction

$\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$

- $\frac{\Delta\left[\mathrm{H}_{2}\right]}{\Delta \mathrm{t}}=\frac{3 \Delta\left[\mathrm{~N}_{2}\right]}{\Delta \mathrm{t}}$
- $\frac{\Delta\left[\mathrm{NH}_{3}\right]}{\Delta \mathrm{t}} \mathrm{t}^{-1}=\frac{-2 \Delta\left[\mathrm{~N}_{2}\right]}{\Delta \mathrm{t}^{\mathrm{t}}}$
- $\frac{\Delta\left[\mathrm{NH}_{3} \mathrm{l}\right.}{\Delta \mathrm{t}}=\frac{-2 \Delta\left[\mathrm{H}_{2}\right]}{3 \Delta \mathrm{t}}$
- Rate $=-\frac{\Delta\left[N_{2}\right]}{\Delta t}=-\frac{1}{3} \frac{\Delta\left[H_{2}\right]}{\Delta t}=\frac{\Delta\left[N_{3}\right]}{2 \Delta t}$
- For this reaction
$-\mathrm{N}_{2} \mathrm{O}_{5} \longrightarrow 2 \mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2}$

$$
\text { Rate }=-\frac{\Delta\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}{\Delta \mathrm{t}}=\frac{\Delta\left[\mathrm{NO}_{2}\right]}{2 \Delta \mathrm{t}}=\frac{\Delta\left[\mathrm{O}_{2}\right]}{\frac{1}{2} \Delta \mathrm{t}}
$$

For the reaction
$\mathrm{aA}+\mathrm{bB} \longrightarrow \mathrm{cC}+\mathrm{dD}$

$$
\text { Rate }=\frac{-1}{a} \frac{\Delta[A]}{\Delta t}=\frac{-1}{b} x \frac{\Delta[B]}{\Delta t}=\frac{1}{c} \frac{\Delta[C]}{\Delta t}=\frac{1}{d} \frac{\Delta[D]}{\Delta t}
$$

- Consider the reaction
- $\mathrm{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}$

- As the reaction progresses the concentration H_{2} decreases

Time

- As the reaction progresses the concentration of N_{2} decreases $1 / 3$ as fast

Time

- As the reaction progresses the concentration NH_{3} goes up 2/3 times

Time

Calculating Rates

From the curves of concentration VS time

- Average rates are taken over long intervals
- Instantaneous rates are determined by finding the slope of a line tangent to the curve at any given point because the rate can change over time

- Average rate (slope) method

Time

- Instantaneous rate (slope) method.

C

Time

$2 \mathrm{NO}_{2} \longrightarrow 2 \mathrm{NO}+\mathrm{O}_{2}$

Measurement of Rate

- Start at a certain initial conc of reactant
- Measure the conc. of reactant and the conc. of product/s at certain time intervals (1 min for example)
- Plot conc VS. time

Reaction rate and concentration

- Reaction rate is α Concentration
- The higher the conc of starting material the more rapidly the reaction takes place
- $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I}) \longrightarrow \mathrm{H}_{2} \mathrm{O}+1 / 2 \mathrm{O}_{2}$ $40 \mathrm{~mol} / \mathrm{L}$ (pure hydrogen peroxide) decomposes vigorously. Why does the rate increase with conc?
- Reactions occur as a result of collisions between reactant molecules
- Reaction rate drops off with time. It becomes zero when the reactant is consumed

12.2 Rate Laws: an introduction

Reactions reversibility and Rate:

- As products accumulate the direction of reaction starts shifting backward
- Thus, reverse reaction becomes important
- Δ [Reactant] will depend on the $R_{\text {Forward }}-R_{\text {revers }}$
- Early on the reaction, the rate will depend on only the amount of reactants present.
- We should measure the reactants as soon as they are mixed.
- Thus, we avoid the reverse reaction
- This is called the Initial rate method.

In the initial rate method, Two key points should be considered:

- The concentration of the products do not appear in the rate law because this is an initial rate.
- The order (exponent) must be determined experimentally,
- can't be obtained from the equation

$2 \mathrm{NO}_{2} \longrightarrow \quad 2 \mathrm{NO}+\mathrm{O}_{2}$

- The rate will only depend on the conc. of the reactants.
- Rate $=k\left[\mathrm{NO}_{2}\right]^{n}$
- This is called a rate law expression.
- \boldsymbol{k} is called the rate constant.
- \mathbf{n} is the rate order -usually a positive integer but could be a fraction.
- In the initial rate method, Two key points should be considered:
TThe concentration of the products do not appear in the rate law because this is an initial rate.
OThe order (exponent) must be determined experimentally,
\mathcal{H} It can't be obtained from the balanced equation

$2 \mathrm{NO}_{2} \rightarrow 2 \mathrm{NO}+\mathrm{O}_{2}$

$$
\text { Rate }=\frac{\Delta\left[N O_{2}\right]}{\Delta t}=k\left[N O_{2}\right]^{n}
$$

- The rate of appearance of O_{2} can be

$$
\text { Rate' }=\frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta \mathrm{t}} \quad=\mathrm{k}^{\prime}\left[\mathrm{NO}_{2}\right]^{\mathrm{n}}
$$

- Because there are $2 \mathrm{NO}_{2}$ for each O_{2}
- Rate $=2 \times$ Rate'
- So $\left.k\left[\mathrm{NO}_{2}\right]^{\mathrm{n}}=2 \mathrm{xk} \mathrm{k}^{\prime} \mathrm{NO}_{2}\right]^{\mathrm{n}}$
- So $k=2 \times k^{\prime}$
- Thus, the value of K depends on how the rate is defined

Types of Rate Laws

- Differential Rate law - describes how rate depends on concentration (Rate/Conc). (It is the usual known rate law)
- Integrated Rate Law - Describes how concentration depends on time (conc/time).
- For each type of differential rate law there is an integrated rate law and vice versa.
- Rate laws can help us better understand reaction mechanisms (steps by which the reaction occurs).

12.3 Determining the Rate Law

- The first step is to determine the form of the rate law (especially its order).
- Rate law must be determined from experimental data.
- For this reaction
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{aq}) \longrightarrow 4 \mathrm{NO}_{2}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g})$ The reverse reaction won't play a role
$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]$ ($\mathrm{mol} / \mathrm{L}$)
Time (s)
1.00
0.88
0.78
0.69 Jow plot the data ${ }_{800}^{600}$]/t
0.54
0.48
0.43
0.38
0.34
0.30

1000
1200
1400
1600
1800
2000

- Rate ${ }_{1}$ at $0.90 \mathrm{M}=-5.5 \times 10^{-4}$
- Rate 2 at $0.45 \mathrm{M}=-2.7 \times 10^{-4}$
- Rate $_{1}=2 \mathrm{X}$ Rate $_{2}$
- Rate $_{1}=\mathrm{k}^{\prime \prime}\left(\text { Rate }_{2}\right)^{1}$
- Rate $_{1} \alpha$ Rate $_{2}$
- This means that the rate depends on conc of $\mathrm{N}_{2} \mathrm{O}_{5}$ to the first power
- Doubling conc will double rate
- Rate $=\frac{-\Delta\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}{\Delta \mathrm{t}}=\mathrm{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{1}=k\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]$
- We say this reaction is first order in $\mathrm{N}_{2} \mathrm{O}_{5}$
- The only way to determine the order is to run the experiment.

Determination of Rate law by Method of Initial Rates

- This method requires that a reaction be run several times.
- The initial concentrations of the reactants are varied.
- The reaction rate is measured just after the reactants are mixed (just after $\mathrm{t}=0$) (Instantaneous rate)
- Eliminates the effect of the reverse reaction.

Order of reactions having one reactant only

- A

Products

- Rate $=k[A]^{m}$

Determination the rate of reaction by initial rate method

- A Products
- Initial rate $=$ Rate at $\mathbf{t = 0}$
- Initial rates are measured at different initial concentrations
- Assume rate of decomposition of \mathbf{A} is measured at two different concentrations 1 and 2

$$
\begin{aligned}
& \rightarrow \text { Rate }_{2}=k[A]_{2}^{m} \\
& \text { Rate } 1^{m}=k[A]_{1}^{m} \\
& \frac{R_{\text {ate }}}{\text { Rate }^{m}}=\frac{\left[A_{1}\right]_{2}^{m}}{[A]_{1}^{m}}=\left(\frac{\left[A_{2}\right]}{\left[A_{1}\right]}\right)^{m} \\
& \ln \frac{R_{\text {ate } 2}}{R_{\text {ate } 1}}=m \ln \left(\frac{\left[A_{2}\right]}{\left[A_{1}\right]}\right) \\
&\left.\quad m=\left(\ln \frac{R_{2}}{R_{1}}\right) / \ln \frac{\left[A_{2}\right]}{\left[A_{1}\right]}\right)
\end{aligned}
$$

\[

\]

(a) Determine the reaction order

$$
\begin{aligned}
& R_{\text {ate }}=k[\mathrm{CH} \mathrm{CHO}]^{m} \\
& \frac{R_{2}}{R_{1}}=\left(\frac{\left[\mathrm{CH}_{3}[\mathrm{CHO}]_{2}\right.}{\left[\mathrm{CH}_{3} \mathrm{CHO}\right]_{1}}\right)^{m} \Rightarrow \frac{0.34}{0.085}=\left(\frac{0.20}{0.10}\right)^{m} \\
\therefore & \ln \left(\frac{0.34}{0.085}\right)=m \ln \left(\frac{0.20}{0.10}\right) \\
& \ln 4=m \ln 2
\end{aligned}
$$

$\operatorname{m} 4=m \ln 2$
$m=\frac{\ln 4}{\ln 2}=2$; i.e., it is a End order rake.
(b) Determine k

$$
\begin{aligned}
& \text { Rate }=K \times(\mathrm{CH} \mathrm{CHO}]^{2} \\
& 0.085 \mathrm{~mol} / \mathrm{l} .5=K(0.10 \mathrm{~mol} / \mathrm{l})^{2} \\
& K=8.5 \mathrm{l} / \mathrm{mol.s}
\end{aligned}
$$

(4.C) Determine the rate when conc. $\mathrm{CH}_{3} \mathrm{CHO}=0.50 \mathrm{mel} / \mathrm{d}$

$$
\begin{aligned}
\text { Rate } & =8.50 \mathrm{l} / \mathrm{mots} \times(0.50 \mathrm{~mol} / \mathrm{l})^{2} \\
& =2.1 \mathrm{~mol} / \mathrm{l} . \mathrm{s}
\end{aligned}
$$

Example of more than one reactant

$\left(\mathrm{CH}_{3}\right) \mathrm{CBr}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$ $\left(\mathrm{CH}_{3}\right) \mathrm{COH}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})$

Experimental determination of reaction order for A process involving more than one reactant
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}(\mathrm{aq})+\mathrm{OH}_{(\mathrm{aq})}^{-} \longrightarrow\left(\mathrm{CH}_{3}\right) \mathrm{COH}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})$

1. Hold the initial conc. of OH^{-}constant $(0.05 \mathrm{M})$ and vary that of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$
2. Hold the initial conc of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$ constant (1.0 M) and vary that of OH^{-}

$$
\begin{aligned}
& \begin{array}{cccccc}
& \cdots & (1) & * & * & (2) \\
\text { Conc. }\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr} & 0.50 & 1.0 & 1.5 & (4) & (5) \\
\text { Conc. } \mathrm{OH}^{-} & 0.050 & 0.050 & 0.050 & & \\
& & 0.10 & 0.20
\end{array} \\
& \begin{array}{llllll}
\text { Rate (miles } & 0.0050 & 0.010 & 0.015 & 0.010 & 0.010
\end{array} \\
& \frac{R_{3}}{R_{1}}=\left(\frac{\left(\mathrm{CH}_{3}\right)_{3} C \mathrm{CB}_{3}}{\left[\left(\mathrm{C} \mathrm{H}_{3}\right)_{3} \mathrm{CBr}\right]_{1}}\right)^{m} \cdot\left(\frac{\left[\mathrm{OH} \mathrm{H}_{3}\right.}{\mathrm{CH}]_{1}}\right)^{n} \\
& \frac{0.015}{0.0050}=\left(\frac{1.5}{0.50}\right)^{m} \Rightarrow \ln \frac{0.015}{0.0050}=m \ln \left(\frac{1.5}{0.5}\right) \Rightarrow m=1 \\
& \frac{\text { Rates }}{\text { Rates }}=\left(\frac{\left[\mathrm{OH}^{-}\right]_{5}}{\left[\mathrm{O}_{2}\right]_{2}}\right)^{n}\left(\frac{\left[\mathrm{CH}_{3} \mathrm{CH}_{2}\right]_{5}}{\mathrm{CH} \mathrm{CH}_{3} \mathrm{CBr}_{2}}\right)^{\mathrm{m}} \\
& k \frac{0.010}{0.010}=\left(\frac{0.20}{0.088}\right)^{n} \operatorname{hn} \frac{0.01}{0.01}=n \cdot \operatorname{hn} \frac{0.20}{0.05} \Rightarrow n^{\prime}=0 .
\end{aligned}
$$

Example of more than two reactants

- For the reaction
$-\mathrm{BrO}_{3}^{-}+5 \mathrm{Br}^{-}+6 \mathrm{H}^{+} \rightarrow 3 \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O}$
- The general form of the Rate Law is Rate $=k\left[\mathrm{BrO}_{3}^{-}\right]^{\mathrm{n}}\left[\mathrm{Br}^{-}\right]^{\mathrm{m}}\left[\mathrm{H}^{+}\right]^{p}$
- We use experimental data to determine the values of $n, m, a n d p$

Initial concentrations (M)

Rate (M/s)

BrO_{3}^{-}
 Br^{-}
 H^{+}

0.10
0.10
0.10
8.0×10^{-4}
0.20
0.10
0.10 1.6×10^{-3}
0.20
0.20
0.10
3.2×10^{-3}
0.10
0.10
0.20
3.2×10^{-3}

Now we have to see how the rate changes with concentration

12.4 Integrated Rate Law Reactant conc. \& time

- The rate law so far expressed rate in terms of concentration
- Now the reactant concentration will be expressed as a function of time.
- It is called differential rate law for the reaction
- Changes Rate $=\frac{\Delta[A]}{\Delta t}$
- We will only work with $\mathrm{n}=0,1$, and 2

First Order

- For the reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5} \longrightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
- We found the Rate $=-\frac{\Delta\left[N_{N} O_{1}\right]}{\Delta t}=\mathbf{k}\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]^{1}$
- If concentration doubles rate doubles.
- If we integrate (using calculus) this equation with respect to time we get the Integrated Rate Law

$$
\ln \frac{\left[\mathrm{N}_{2} \mathrm{O}_{5}\right] \mathrm{o}}{\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}=k t
$$

- $\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=-\mathrm{kt}+\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}$
- In is the natural log
- $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]_{0}$ is the initial concentration.

First Order

- General form: Rate $=\Delta[A] / \Delta t=k[A]$
$-\ln [A]=-k t+\ln [A]_{0}$

Slope intercept

- A graph of $\ln [A]$ vs time is a straight line.

$$
\begin{aligned}
& \ln \frac{\left[A_{0}\right.}{[A]}=k t \\
& \text { (First-oder only) } \\
& \ln \left[A_{0}-\ln [A]=k t\right. \\
& \ln [A]=\ln A_{0}-k t
\end{aligned}
$$

First order rate laws

- By getting the straight line you can prove it is first order
- Often expressed in a ratio

$$
\ln \left(\frac{[\mathrm{A}]_{0}}{[\mathrm{~A}]}\right)=\mathrm{kt}
$$

Half Life of a reaction, $\mathrm{t}_{1 / 2}$

- The time required to reach half the original concentration.
- Time required for one half of the reactant to disappear
- If the reaction is first order
- $[\mathrm{A}]=[\mathrm{A}]_{0} / 2$ when $\mathrm{t}=\mathrm{t}_{1 / 2}$

$$
\ln \left(\frac{[\mathrm{A}]_{0}}{[\mathrm{~A}]_{0}^{2}}\right)=k t_{1 / 2}
$$

- $\ln (2)=k t_{1 / 2} \Rightarrow k t_{1 / 2}=0.693 \Rightarrow t_{1 / 2}=$

Half-Life of a Reaction, $t r_{2}$
$t_{\frac{1}{2}}$ is the time required ford half of the reactant to disappear.

$$
\begin{aligned}
& {[A]=\frac{1}{2}[A]_{0} \ldots\left(\text { at } t_{1 / 2}\right)} \\
& \ln \frac{[A]}{[A]}=k t_{1 / 2} \\
& \ln 2=k t_{1 / 2} \quad \Rightarrow k t_{1 / 2}=0.693
\end{aligned}
$$

$\therefore t_{1 / 2}=\frac{0.693}{k} ; t_{1 / 2}$ is constant, indpenden of conc.

Given, h for decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$
to be $10.35 \mathrm{~min}^{-1}$.
(a) Calculate conc. $\mathrm{N}_{2} \mathrm{O}_{5}$ after 4.0 min . Starting with 0.160 mole [AT

$$
\begin{aligned}
& \ln \frac{[A]_{0}}{[A]}=k t \\
& \ln \frac{0.160}{[A]}=\frac{0.35 \times 4}{[A]}=1.4 \\
\therefore & \frac{0.160}{[A]}=e^{1.4}=4.0 \\
\therefore & {[A]=\frac{0.160}{4.0}=0.040 \mathrm{~mol} / \mathrm{l} }
\end{aligned}
$$

(b) The time required for the conc. Go drop from 0.16 to 0.100 M .

$$
\ln \frac{0.16}{0.10}=0.35 \times t \Rightarrow t=1.3 \mathrm{~min}
$$

(c) The time required for half of the sample t deconyo. $t_{\frac{1}{2}}=\frac{0.693}{k}=\frac{0.693}{0.35}=2 \mathrm{~min}$

Example $\frac{11.3}{297}$. Given, R for decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ to be $10.35 \mathrm{~min}^{-1}$.
(a) Calculate conc. $\mathrm{N}_{2} \mathrm{O}_{5}$ after 4.0 min . Starting with 0.600 mole A]

$$
\begin{aligned}
& \ln \frac{[A]_{0}}{[A]}=k t \\
& \ln \frac{0.160}{[A]}=\frac{0.35 \times 4}{}=1.4 \\
& \therefore \frac{0.160}{[A]}=e^{1.4}=4.0 \\
& \therefore {[A]=\frac{0.160}{4.0}=0.040 \mathrm{~mol} / \mathrm{l} }
\end{aligned}
$$

(b) The time required for the conc. Es drop from 0.16 to 0.100 m .

$$
\ln \frac{0.16}{0.10}=0.35 \times t \Rightarrow t=1.3 \mathrm{~min}
$$

(c) The time required for half of the sample t deconyo $t_{\frac{1}{2}}=\frac{0.693}{k}=\frac{0.693}{0.35}=2 \mathrm{~min}$

Half Life

- $\mathrm{t}_{1 / 2}=0.693 / \mathrm{k}$
- The time to reach half the original concentration does not depend on the starting concentration.
- An easy way to find k

$$
\begin{aligned}
a A_{(s)} \rightarrow & \text { products } \\
& \text { Rate }=k[A]^{2}
\end{aligned}
$$

From Calculus,

$$
\begin{aligned}
& \frac{1}{[A]}-\frac{1}{[A]_{0}}=k t \\
& \frac{1}{[m]}=\frac{1}{\left[m 0_{0}\right.}+k t
\end{aligned}
$$

$$
\begin{aligned}
& \frac{t 1 / 2}{[A]}=\frac{[A]_{0}}{2} \\
& \frac{1}{\frac{1}{2}[A]_{0}}-\frac{1}{[A]_{0}}=k t_{1 / 2} \\
& \frac{1}{[A]_{0}}=k t_{1 / 2} \\
& t_{1}=\frac{1}{k[A]_{0}}
\end{aligned}
$$

$$
t_{1 / 2} \propto \frac{1}{\text { anj.cmer. }}
$$

Second order rate laws

$\bullet \mathbf{a A} \longrightarrow$ Products

- Rate $=-\Delta[A] / \Delta t=k[A]^{2}$
- integrated rate law
- $1 /[\mathrm{A}]=\mathrm{kt}+1 /[\mathrm{A}]_{0}$
- $y=1 /[A]$
$\mathrm{m}=\mathrm{k}$

$$
Y=m X+b
$$

- $\mathrm{x}=\mathrm{t}$
$\mathrm{b}=1 /[\mathrm{A}]_{0}$
- A straight line of 1/[A] vs t is graphed
- Knowing k and $[A]_{0}$ you can calculate [A] at any time t

Second Order Half Life

- $[\mathrm{A}]=\frac{[\mathrm{A}]_{0}}{2}$

at $\mathrm{t}=\mathrm{t}_{1 / 2}$

$\frac{1}{[\mathrm{~A}]_{0 / 2}}=k t_{1 / 2}+\frac{1}{[\mathrm{~A}]_{0}}$ $\frac{2}{[\mathrm{~A}]_{0}}-\frac{1}{[\mathrm{~A}]_{0}}=k t_{1 / 2}$

$$
\frac{1}{[\mathrm{~A}]_{0}}=k t_{1 / 2} \quad \mathrm{t}_{1 / 2}=\frac{1}{\mathrm{k}[\mathrm{~A}]_{0}}
$$

* Zero order
a $A \rightarrow$ Products

$$
\text { rate }=k[A]^{0}=k
$$

ie., Rate is independent of Conc..

$$
\begin{aligned}
& \text { Rate }=-\frac{\Delta[A]}{\Delta t}=k \\
& \Delta t=t-0=t ; \Delta[A]=[A]-[A]_{0} \\
& \frac{-\Delta[A]}{\Delta t}=\frac{[A]_{0}-[A]}{t}=k \\
& {[A]_{0}-[A]=k t} \\
& {[A]=\left[A_{0}\right]-k t} \\
& \text { [A] } \\
& {[A] \text { 。 }} \\
& \text { slope }=-k \\
& t \\
& \text { * L1/2 } \\
& \text { when } t=t \frac{1}{2} \Rightarrow[A]=[A]_{0} / 2 \\
& \therefore \frac{[A]_{0}}{2}=[A]_{0}-k t_{1 / 2} \\
& t_{1 / 2}=\frac{[A]_{0}}{2 k}
\end{aligned}
$$

Zero order rate laws

- aA \longrightarrow Products
- Rate $=k[A]^{0}=k$
- Rate does not change with Conc.
- Integrated rate law: $[\mathrm{A}]=-\mathrm{kt}+[\mathrm{A}]_{0}$
- When [A] $=\frac{[A]_{0}}{2} \quad t=t_{1 / 2}$
$-\mathrm{t}_{1 / 2}=\frac{[\mathrm{A}]_{0}}{2 \mathrm{k}}$

Time

Time

Examples of zero order rate law

- reactions take place on a surface because the surface area stays constant.
- Enzyme chemistry

Integrated rate laws for reactions with more than one reactant
$-\mathrm{BrO}_{3}^{-}+5 \mathrm{Br}^{-}+6 \mathrm{H}^{+} \longrightarrow 3 \mathrm{Br}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

- The rate law for this reaction was found to be
- Rate $=\mathrm{k}\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$
- To investigate this reaction rate conditions need to be controlled

Rate $=\mathrm{k}\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$

- The experiment is set so that two of the reactants are in large excess.
- $\left[\mathrm{BrO}_{3}{ }^{-}\right]_{0}=1.0 \times 10^{-3} \mathrm{M}$
- $\left[\mathrm{Br}^{-}\right]_{0}=1.0 \mathrm{M}$
- $\left[\mathrm{H}^{+}\right]_{0}=1.0 \mathrm{M}$
- As the reaction proceeds $\left[\mathrm{BrO}_{3}{ }^{-}\right]$ changes significantly
- $\left[\mathrm{Br}^{-}\right]$and $\left[\mathrm{H}^{+}\right]$don't

$$
\begin{aligned}
& \text { Rate }=\mathrm{k}\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2} \\
& \text { - This rate law can be rewritten }
\end{aligned}
$$

- Rate $=\mathrm{k}\left[\mathrm{BrO}_{3}{ }^{-}\right]\left[\mathrm{Br}^{-}\right]_{0}\left[\mathrm{H}^{+}\right]_{0}^{2}{ }^{2}, 0$ inintial conc.
- Rate $=\mathrm{k}\left[\mathrm{Br}^{-}\right]_{0}\left[\mathrm{H}^{+}\right]_{0}^{2}\left[\mathrm{BrO}_{3}{ }^{-}\right]$
- Rate $=k \cdot\left[\mathrm{BrO}_{3}{ }^{-}\right]$
- This is called a pseudo first order rate law.
${ }^{\circ} \mathrm{k}=\frac{\mathrm{k}^{\prime}}{\left[\mathrm{Br}^{-}\right]_{0}\left[\mathrm{H}^{+}\right]_{0}{ }^{2}}$

12.5 Summary of Rate Laws

TABLE 12.6 Summary of the Kinetics for Reactions of the Type aA \rightarrow Products That Are Zero, First, or Second Order in [A]

Rate Law:
Integrated Rate Law:
Plot Needed to Give a Straight Line:
Relationship of Rate Constant to the Slope of Straight Line:

Half-life:
Rate $=k$
$[\mathrm{~A}]=-k t+[\mathrm{A}]_{0}$
$[\mathrm{~A}]$ versus t
Slope $=-k$
$t_{1 / 2}=\frac{[\mathrm{A}]_{0}}{2 k}$
Rate $=k[\mathrm{~A}]$
$\ln [\mathrm{A}]=-k t+\ln [\mathrm{A}]_{0}$
$\ln [\mathrm{~A}]$ versus t
Slope $=-k$
$t_{1 / 2}=\frac{0.693}{k}$

Rate $=k[\mathrm{~A}]^{2}$
$\frac{1}{[\mathrm{~A}]}=k t+\frac{1}{[\mathrm{~A}]_{0}}$
$\frac{1}{[\mathrm{~A}]}$ versus t

$$
\text { Slope }=k
$$

$$
t_{1 / 2}=\frac{\mathbf{1}}{k[\mathbf{A}]_{0}}
$$

Linearity Relationship

- Order
- 0-order
- 1-order
- 2-oder
[A] $\alpha \mathrm{t}$

Linear relationship

$\ln [A] \alpha t$

Example

The following data Were obtained
for the gas - phase decomposition of HI. Is this reaction 0., first,- or second- order in HI?

Since $\frac{1}{[M 2]} \frac{w_{S}}{} t$ is linear, the reaction is a second-order

Example
In the first order decomposition of $\mathrm{N}_{2} \mathrm{H}_{y}$ at 340 k , it is found that 30% of a sample

Mus decomposed in 13.2 min. How lng will if take 50.0% of the sample t decompose?

12.6 Reaction Mechanisms

- The series of steps that actually occur in a chemical reaction.
- Kinetics can tell us something about the mechanism
- A balanced equation does not tell us how the reactants become products.

Reaction Mechanisms

- $2 \mathrm{NO}_{2}+\mathrm{F}_{2} \longrightarrow 2 \mathrm{NO}_{2} \mathrm{~F}$
- Rate $=\mathrm{k}\left[\mathrm{NO}_{2}\right]\left[\mathrm{F}_{2}\right]$ (known from experiment)
- The proposed mechanism is
- $\mathrm{NO}_{2}+\mathrm{F}_{2} \xrightarrow{\mathrm{k}_{1}} \mathrm{NO}_{2} \mathrm{~F}+\mathrm{F}$ (slow)
$-\mathrm{F}+\mathrm{NO}_{2} \xrightarrow{k_{2}} \mathrm{NO}_{2} \mathrm{~F}$
(fast)
- F is called an intermediate. It is formed then consumed in the reaction

Reaction Mechanisms

- Each of the two reactions given above is called an elementary step (steps that constitute a reaction mechanism)
- The rate law for an elementary step reaction can be written from its molecularity .
- Molecularity is the number of species that must collide (come together) to produce the reaction given in the step.
- Unimolecular step involves one molecule Rate is first order.
- Bimolecular step - requires two molecules - Rate is second order
- Termolecular step- requires three molecules - Rate is third order
$>$ Termolecular steps are almost never heard of because the chances of three molecules coming into contact at the same time are very small
- Elementary steps involve: decomposition of a single molecule or collisions between molecules
- $A \rightarrow$ prod. Unimol Rate $=k[A]$
- $A+A \Rightarrow$ prod. Bimol Rate $=k[A]^{2}$ $2 A \rightarrow$ prod.
- $A+B \Rightarrow$ prod.
- A+A+B=्रProd.
- 2A+B \rightarrow Prod.
- $\mathrm{A}+\mathrm{B}+\mathrm{C} \rightarrow$ Prod. Termol Rate= $\mathrm{k}[\mathrm{A}][\mathrm{B}][\mathrm{C}]$
- It is obvious that the rate law for an elementary step is derived directly from the molecularity of the elementary step.

Precisely, what is the reaction mechanism?

- It is a series of elementary steps that must satisfy two requirements

1. The sum of the elementary steps must give the overall balanced equation for the reaction
2. The mechanism must agree with the experimentally determined rate law.

How to make sure that a proposed

 mechanism is acceptable?The balanced equation for the reaction:
$2 \mathrm{NO}_{2}+\mathrm{F}_{2}$
$2 \mathrm{NO}_{2} \mathrm{~F}$
The experimentally determined rate law is Rate $=\mathrm{k}\left[\mathrm{NO}_{2}\right]\left[\mathrm{F}_{2}\right]$
The suggested mechanism is :

$$
\begin{array}{lll}
\mathrm{NO}_{2}+\mathrm{F}_{2} \\
\mathrm{~F}+\mathrm{NO}_{2} \xrightarrow{\mathrm{k}_{1}} \xrightarrow{\mathrm{k}_{2}} & \mathrm{NO}_{2} \mathrm{~F}+\mathrm{F} & \text { (slow) } \\
\mathrm{NO}_{2} \mathrm{~F} & \text { (fast) }
\end{array}
$$

Is the suggested mechanism acceptable?

Is the suggested mechanism acceptable?

1. Make sure that the sum of the two steps give the overall equation (requirement 1 above)
$\mathrm{NO}_{2}+\mathrm{F}_{2} \longrightarrow \mathrm{NO}_{2} \mathrm{~F}+\mathrm{F}$ (slow)
$\xrightarrow{\mathrm{F}+\mathrm{NO}_{2} \longrightarrow \mathrm{NO}_{2} \mathrm{~F}, \mathrm{~N}^{2}}$
(fast)
$2 \mathrm{NO}_{2}+\mathrm{F}_{2} \longrightarrow 2 \mathrm{NO}_{2} \mathrm{~F}$
$>$ Yes this requirement is met
2. To check requirement 2 we need to introduce the term : "Rate determining step" that is usually the slow step
A reaction cannot be faster than the slowest step!

- The rate of the forward reaction is controlled by the rate of formation of $\mathrm{NO}_{2} \mathrm{~F}$ in the first step
- Since this is an elementary step, the rate law for the whole reaction can be written from the molecularity of this step
- Rate law for slow step $=\mathrm{k}_{1}\left[\mathrm{NO}_{2}\right]\left[\mathrm{F}_{2}\right]$
- Since the overall reaction cannot be faster than this step, then the overall rate $=\mathrm{k}_{1}\left[\mathrm{NO}_{2}\right]\left[\mathrm{F}_{2}\right]$
- This rate law agrees with that suggested from experiment as mentioned above

12.7 A model for Chemical Kinetics (Collision Theory)

- Molecules must collide to react.
- Concentration affects rates because collisions are more likely depends upon concentration
- Molecules must collide hard enough.
- Only a small number of collisions (active collisions) produce reactions.
- Temperature and rate are related.
- Arrhenius: An activation energy must be overcome.

What are the requirements for a collision to be active?

1. Molecules should be energetic enough (possess enough kinetic energy)

- That is: molecules should possess energy equal or above a certain value known as activation energy, E_{a}

2. Molecules should be properly oriented Rate α Effective (active) collisions

Br Br

$0 \mathrm{NBr}-\mathrm{Br} \mathrm{NO} \rightarrow \mathrm{Br}_{\mathrm{Br}}^{\mathrm{NO}}$

$\mathrm{Br} \mathrm{NO} \quad \mathrm{ON} \mathrm{Br} \longrightarrow \mathrm{NO}$
 Reaction $2 \mathrm{BrNO}(\mathrm{g}) \longrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g})$

Activation Energy, E_{a}

- It is the minimum energy required for an effective collision to take place, i.e., for reactants to produce products

Reaction Coordinate

Activated complex (unstable high energy species)

Reactants

Reaction Coordinate

Reaction Coordinate

$$
\begin{gathered}
\text { Cunstable high eneroy species) } \\
\text { Activated Comples }
\end{gathered}
$$

- Consider the reaction $2 \mathrm{BrNO}(\mathrm{g}) \longrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Br} 2(\mathrm{~g})$

(Activated complex)

Mechanism of the path of reaction

$$
\begin{aligned}
& \mathrm{CO}_{2}+\mathrm{NO}_{2} \mathrm{~S}_{3} \longrightarrow \mathrm{CO}_{2}+\mathrm{NO}_{3}
\end{aligned}
$$

Characteristics of E_{a}

- E_{a} is independent of temperature
- E_{a} is a positive quantity, i.e., Ea>0
- E_{a} depends upon the nature of reaction. That is :
$>$ Fast reactions have small E_{a}
$>$ Slow reactions have large E_{a}

Arrhenius Equation

- According to Arrhenius: Reaction rate should increase with temperature.
- At high temperature more molecules have the energy required to get over the E_{a} barrier.
- The number of collisions with the necessary energy increases exponentially with temperature

Generally: Rate is doubled For each $10^{\circ} \mathrm{C}$ increase in T

Reaction Rate and Temperature

- Rate of reaction is α Temperature (endoand exothermic reactions)
- Pressure cocker is used to cook fast. High temp. is achieved
- Refrigerator is used to store food. Chemical reactions responsible for food spoilage are slowed down
- In general an increase of $10^{\circ} \mathrm{C}$ doubles the reaction rate

Arrhenius Equation

Collisions must have enough energy to produce the reaction (must equal or exceed the activation energy).
© Orientation of reactants must allow formation of new bonds.

Arrhenius Equation

- Number of collisions with the required energy $=z^{2 p e-E a / R T}$
>z = collision frequency (total \# of collisions)
$>p=$ steric factor that reflects the fraction of collisions with effective orientations
$>E_{a}=$ activation energy
$>R=$ ideal gas constant
$>T$ is temperature in Kelvin

Problems

- Observed rate is less than the number of collisions that have the minimum energy?
- There are many inactive collisions; why?
- Due to Molecular orientation

Arrhenius Equation (continued)

- A = frequency factor (replaces zp factor)
- $k=$ rate constant
- $E_{\mathrm{a}}=$ activation energy
- $T=$ temperature
- $R=$ gas constant

Arrhenius equation

$$
k=A e^{-E_{\mathrm{a}} / R T}
$$

R : gas constant = $8.31 \mathrm{j} / \mathrm{mol} . \mathrm{K}$
$E_{a}=-R$ (slope)

To determine E_{a} :
Plot Ink versus 1/T

Arrhenins equation.

Two point equation relating k and T

- Consider k_{1} and k_{2} at two temperatures T_{2} and T_{1}

$$
\begin{gather*}
\ln k_{2}=\ln A-\frac{E a}{R T_{2}} \tag{1}\\
\ln k_{1}=\ln A-\frac{E a}{R T_{1}} \tag{2}\\
\ln k_{2}-\ln k_{1}=\frac{E a}{R}\left[\frac{1}{T_{1}}-\frac{1}{T 2}\right] \quad \text { (2) } \\
\ln \frac{k_{2}}{k_{1}}=\frac{E a}{R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]=\ln \frac{\text { Rate }_{2}}{\text { Rate }_{1}}
\end{gather*}
$$

For a certain reaction, the rate constant doubles when the temperature increases from is is $25^{\circ} \mathrm{C}$, Calculate
(a) The activation energy, Ea

$$
\begin{aligned}
& \ln \frac{k_{2}}{k_{t}}=\ln \frac{2}{1}=\frac{E_{a}}{8.31}\left(\frac{298-288}{298 \times 288}\right) \\
& E_{a}=4.94 \times 10^{4} \mathrm{~J}=49.6 \mathrm{~kJ}
\end{aligned}
$$

(b) The rate constant, k, at $100^{\circ} \mathrm{C}$, taking k at $25^{\circ} \mathrm{C}$ to be $1.2 \times 10^{-2} \mathrm{~L} / \mathrm{mol} \mathrm{s}$

$$
\begin{aligned}
\ln \frac{k_{2}}{k_{1}} & =\frac{49,000 \mathrm{~J} / \mathrm{mol}}{8.31 \mathrm{~J} / \mathrm{mol} . \mathrm{k}}\left(\frac{\left.373^{k}-298 \mathrm{k}\right]}{373 \times 298}=3.98\right. \\
\frac{k_{2}}{k_{1}} & =e^{3.98}=53 \\
\therefore k_{2} & =53\left(1.2 \times 10^{-3}-\mathrm{m} / \text { mol } \mathrm{s}\right)=0.644 / \mathrm{molss}
\end{aligned}
$$

Mechanisms and rates

- There is an activation energy for each elementary step.
- Activation energy determines k.
- $k=A e^{-(E / R T)}$
- k determines rate
- Slowest step (rate determining) must have the highest activation energy.

12.8 Catalysis

- A catalyst is a substance that speeds up a reaction without being used up in the reaction.
- Enzymes are biological catalysts.
- Homogenous Catalysts are in the same phase as the reactants.
- Heterogeneous Catalysts are in a different phase as the reactants.

How Catalysts Work

- Catalysts allow reactions to proceed by a different mechanism - a new pathway.
- New pathway has a lower activation energy.
- More molecules will have this activation energy.
- Do not change ΔE between reactants and products

How does the catalyst function?

It lowers E_{a},
$E_{\text {cat. }}<E_{a}$

e.9ン $2 \mathrm{~N}_{2} \mathrm{O}_{\mathrm{g}}$, $\rightarrow 2 \mathrm{~N}_{2} 9$) $+\mathrm{O}_{2}$, 9, ;

$$
\begin{aligned}
& E_{a}=+250 \mathrm{~kJ} \\
& E_{\text {Cat }}=+120 \mathrm{~kJ}
\end{aligned}
$$

* The Catalyst provides an alternative pathway of lower energy for the reaction:
* Catalyst does not affect
(1.) Ereactant or Eproduct more rapidly
(2.) The value of or the position of equilibrium
(3) The yield of product

Heterogeneous catalyst

Mechanism of Catalytic decomposition of $\mathrm{N}_{2} \mathrm{O}$ on Au weak bur

$$
\begin{gathered}
N \equiv N-O_{(s)}+A u(s) \xrightarrow{\text { Chemical }} N \equiv N \backsim 0 \cdots A u(s) \\
N \equiv N+O(s)+A u(s)
\end{gathered}
$$

Heterogeneous catalysis Hydrogenation of ethylene

Ethylene

Ethane

Heterogenous Catalysts

(H) H

Hydrogenation of ethylene

- Hydrogen bonds to surface of metal.
- Break H-H bonds

Pt surface

Heterogeneous Catalysts

Pt surface

Heterogeneous Catalysts

- The double bond breaks and bonds to the catalyst.

Heterogeneous Catalysts

- The hydrogen atoms bond with the carbon

Heterogeneous Catalysts

Catalysts and rate

- Catalysts will speed up a reaction but only to a certain point.
- Past a certain point adding more reactants won't change the rate.
- Zero Order

Catalysts and rate.

- Rate increases until the active sites of catalyst are filled.
R
a
t
e
Concentration of reactants

Negative effect of chemical catalysis

$-\mathrm{SO}_{2}+\mathrm{O}_{2}$ (atmosphere) $\xrightarrow{\begin{array}{l}\text { Dust particles } \& \\ \text { Water droplets }\end{array}} \mathrm{SO}_{3}$
$-\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{SO}_{3} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$

Catalytic converter in automobiles

- Nitrogen reacts with oxygen in a high temperature combustion process as follows:
- $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}(\mathrm{g})$
- Nitric oxide, NO catalyzes ozone production in the troposphere (atmosphere closest to earth).
- NO catalyzes the decomposition of ozone in the upper atmosphere
- Both effect are unfortunate environmentally
- How do we prevent NO emission from vehicles?

Catalytic converter in automobiles

The mechanism is :

$$
\begin{aligned}
& 2 \mathrm{CO}_{(\mathrm{s})}+\mathrm{O}_{2}(\mathrm{~s}) \xrightarrow{\mathrm{Pt}} 2 \mathrm{CO}_{2}(\mathrm{~s}) \\
& \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~s}+\frac{15}{2} \mathrm{O}_{2}\left(\stackrel{\mathrm{Pt}}{\longrightarrow} \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}_{(}(\mathrm{l})\right. \\
& \mathrm{CO}_{3}+\mathrm{NO}_{3} \xrightarrow{\mathrm{Rh}} \mathrm{CO}_{2}+\frac{1}{2} \mathrm{~N}_{2}
\end{aligned}
$$

Problem: Solid catalyst is easily "poisoned" * Lead in the gasoline poisones the Pt-Rh catalyst. α Thins Unleaded gasoline should be used.

Homogenous Catalysts in gases

- Homogeneous catalysts exist in the gaseous and liquid phases
- Nitrogen reacts with oxygen in a high temperature combustion process as follows:
- $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

2NO (g)

- Nitric oxide, NO catalyzes ozone production in the troposphere (atmosphere closest to earth).
- NO catalyzes the decomposition of ozone in the upper atmosphere
- Chlorofluorocarbons catalyze the decomposition of ozone.
- Enzymes regulating the body processes. (Protein catalysts)

Homogeneous catalysis in gases

 Effect of ozone in the lower atmosphere- Bonds in $\mathrm{N} \equiv \mathrm{N}, \mathrm{O}=\mathrm{O}$ are very strong at normal temperatures
- At significantly high temperatures (internal combustion engine of automobiles) NO is formed. Most of it is converted back to N_{2} but some escapes; where does it go? Atmosphere
- $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ $\mathrm{NO}_{2}(\mathrm{~g}) \xrightarrow{\text { Light }} \mathrm{NO}(\mathrm{g})+\mathrm{O}(\mathrm{g})$
- $\mathrm{O}_{2}(\mathrm{~g})+\mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{O}_{3}(\mathrm{~g})$
- NO acts as a catalyst; it assists production of ozone without being consumed (Book p. 594)

Effect of NO in the upper atmospher

$\mathrm{NO}(\mathrm{g})+\mathrm{O}_{3} \longrightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ $\mathrm{O}(\mathrm{g})+\mathrm{NO}_{2}(\mathrm{~g}) \longrightarrow \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$

$\mathrm{O}(\mathrm{g})+\mathrm{O}_{3}(\mathrm{~g}) \longrightarrow \mathbf{2 O}_{2}(\mathrm{~g})$

Effect of Freons on ozone layer

- Freons were used as refrigerants and propellants in aerosol
- Most common is $\mathrm{CCl}_{2} \mathrm{~F}_{2}$. They migrate eventually to upper atmosphere and decompose there by the high energy of light
$-\mathrm{CCl}_{2} \mathrm{~F}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CCIF}_{2}(\mathrm{~g})+\mathrm{Cl}(\mathrm{g})$
$-\mathrm{Cl}(\mathrm{g})+\mathrm{O}_{3}(\mathrm{~g}) \longrightarrow \mathrm{ClO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{O}(\mathrm{g})+\mathrm{ClO}(\mathrm{g}) \longrightarrow \mathrm{Cl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{O}(\mathrm{g})+\mathrm{O}_{3}(\mathrm{~g}) \longrightarrow \mathrm{OO}_{2}(\mathrm{~g})$

Enzymes

Reactims in living organisms are catalyzed by enzymes.

* Enzymes: protein molecules of high molar mass.
* +.g., decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$

$$
2 \mathrm{H}_{2} \mathrm{O}_{2} \text { (ave } \xrightarrow{\substack{\text { Cenzymal } \\ \text { Catalase }}} 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}(3)
$$

used is treat frosh, cut

$$
\text { * Egg } \underset{\substack{\text { maltose }}}{\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{ca})+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { Maltase }} \underset{\text { glucose }}{\longrightarrow} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}
$$

* Without enzyme, more than 50 years may be required to digest a meal.

