## Calculation of Pumping Power

(see example 2.2 of the textbook)


The figure above shows an arrangement for pumping n-pentane ( $\rho_{\text {n-pentane }}=39.3 \mathrm{lbm} / \mathrm{ft}^{3}$ ) at $25^{\circ} \mathrm{C}$ from one tank to another, through a vertical distance of 40 ft . All piping is 3-in. I.D. Assume that the overall frictional losses in the pipes are given by (methods to be described later in Chapter 3):

$$
F=2.5 u_{m}^{2} \frac{\mathrm{ft}^{2}}{\mathrm{~s}^{2}}=\frac{2.5 u_{m}^{2}}{g_{c}} \frac{\mathrm{ftlb}_{\mathrm{f}}}{\mathrm{lb}_{\mathrm{m}}}
$$

For simplicity, you may ignore friction in the short length of pipe leading to the pump inlet. Also, the pump and its motor have a combined efficiency of $75 \%$. If the mean velocity $u_{m}$ is 25 $\mathrm{ft} / \mathrm{s}$, determine the following:
(a) The power required to drive the pump.
(b) The pressure at the inlet of the pump, and compare it with 10.3 psia, which is the vapor pressure of n-pentane at $25^{\circ} \mathrm{C}$.
(c) The pressure at the pump exit.

## Solution:

(a) Power, $\underline{\mathrm{P}}=\mathrm{m} * w_{\mathrm{s}}$

$$
m=\rho u_{m} A_{\text {pipe }}=39.3 * 25 * \frac{\pi}{4}\left(\frac{3}{12}\right)^{2}=48.2 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{~s}}
$$

Mechanical Energy Balance (MEB) to find $w_{s}$ :
$\Delta\left(\frac{u^{2}}{2}\right)+g \Delta z+\frac{\Delta P}{\rho}+w_{s}+F=0$
Apply MEB between points (1) and (4)

$$
\begin{aligned}
& \Rightarrow\left(\frac{u_{4}^{2}}{2}-\frac{u_{1}^{2}}{2}\right)+g\left(z_{4}-z_{1}\right)+\frac{P_{4}-P_{1}}{\rho}+w_{s}+2.5 u_{m}^{2}=0 \quad \text { Note that }\left(P_{1}=P_{4}\right) \\
& \Rightarrow w_{s}=-\left\{\left(\frac{25^{2}}{2}-\frac{0}{2}\right)+32.2 * 40+0+2.5 * 25^{2}\right\}=-3163 \frac{\mathrm{ft}^{2}}{\mathrm{~s}^{2}} * \frac{1}{32.2 \frac{\mathrm{lb}_{\mathrm{m}} \mathrm{ft}}{\mathrm{lb}_{\mathrm{f}} \mathrm{~s}^{2}}}=-98.3 \frac{\mathrm{ftlb}_{\mathrm{f}}}{\mathrm{lb}_{\mathrm{m}}}
\end{aligned}
$$

Note: -ve sign is due to the fact that the work is done on the system.

Real work required $=\mathrm{W}_{\text {real }}=\frac{- \text { work }_{\text {ideal }}}{\text { efficiency }}=\frac{-w_{s}}{\eta}=\frac{98.3}{0.75}=131.0 \frac{\mathrm{lb}_{\mathrm{f}} \mathrm{ft}}{\mathrm{lb}_{\mathrm{m}}}$
Power $=m \mathrm{~W}_{\text {real }}=48.2 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{s}} * 131.0 \frac{\mathrm{lb}_{\mathrm{f}} \mathrm{ft}}{\mathrm{lb}_{\mathrm{m}}}=6313.0 \frac{\mathrm{lb}_{\mathrm{f}} \mathrm{ft}}{\mathrm{s}} * \frac{1}{737.6 \frac{\mathrm{~b}_{\mathrm{f}} \mathrm{ft} / \mathrm{s}}{\mathrm{kw}}}=8.56 \mathrm{kw}$
(b) To find $\mathrm{P}_{2}$ at the inlet of the pump apply MEB between (1) and (2)

$$
\left(\frac{u_{2}^{2}}{2}-\frac{u_{1}^{2}}{2}\right)+g\left(z_{2}-z_{1}\right)+\frac{P_{2}-P_{1}}{\rho}+w+F=0
$$

- No work between (1) and (2)
- Short pipe assume negligible frictional losses

$$
\begin{aligned}
& \left(\frac{25^{2}}{2}-\frac{0}{2}\right)+32.2 *(-4.5)+\frac{P_{2}-0}{39.3}+0+0=0 \\
& P_{2}=-6586.7 \frac{\mathrm{ft}^{2}}{\mathrm{~s}^{2}} \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{ft}^{3}} * \frac{1}{32.2 \frac{\mathrm{ft} \mathrm{lb}_{\mathrm{m}}}{\mathrm{lb}_{\mathrm{f}} \mathrm{~s}^{2}}}=-204.6 \frac{\mathrm{lb}_{\mathrm{f}}}{\mathrm{ft}^{2}} \quad \text { (gauge pressure) } \\
& P_{2}=-204.6 \frac{\mathrm{lb}_{\mathrm{f}}}{\mathrm{ft}^{2}} * \frac{\mathrm{ft}^{2}}{144 \mathrm{in}^{2}}=-1.42 \mathrm{psig}=-1.42+14.7=13.3 \mathrm{psia}
\end{aligned}
$$

(c) To find $\mathrm{P}_{3}$ MEB between (2) and (3)

$$
\begin{array}{ll}
\frac{u_{3}^{2}-u_{2}^{2}}{2}+g\left(z_{3}-z_{2}\right)+\frac{P_{3}-P_{2}}{\rho}+w+F=0 \\
\mathrm{P}_{2}=-1.42 \mathrm{psig}, \quad \mathrm{u}_{2}=\mathrm{u}_{3,} & \mathrm{z}_{3}-\mathrm{z}_{2}=0.5 \mathrm{ft}, w_{\mathrm{s}}=-98.3 \frac{\mathrm{ftlb}_{\mathrm{f}}}{\mathrm{lb}_{\mathrm{m}}} \text { (see part a) }
\end{array}
$$

solving $\Rightarrow P_{3}=25.2$ psig

