Mass Balance

CHE 204, Prepared by: Dr. Usamah Al-Mubaiyedh

A tank is filled with water by two inlets, as shown in the figure below:

Tank top cross sectional area

(a) Derive an expression for the rate of water height increase as a function of time, $d h / d t$.
(b) Calculate $d h / d t$ if $A_{\mathrm{t}}=2 \mathrm{ft}^{2}, D_{1}=1-\mathrm{in}, D_{2}=3-\mathrm{in}, u_{1}=3 \mathrm{ft} / \mathrm{s}, u_{2}=2 \mathrm{ft} / \mathrm{s}$.

Solution:

(a) Mass Balance: $\quad m_{\text {in }}-m_{\text {out }}=\frac{d}{d t}\left(\mathrm{M}_{\text {syst. }}\right), \quad\left(m_{\text {out }}=0\right)$

$$
\begin{array}{ll}
m_{\mathrm{in}}=\rho u_{1} A_{1}+\rho u_{2} A_{2}, & M_{\text {syst. }}=\rho A_{\mathrm{t}} h \\
\rho u_{1} A_{1}+\rho u_{2} A_{2}=\frac{d}{d t}\left(\rho A_{\mathrm{t}} h\right), & \left(m_{\text {out }}=0\right) \\
\frac{d h}{d t}=\frac{u_{1} A_{1}+u_{2} A_{2}}{A_{\mathrm{t}}} &
\end{array}
$$

(b)

$$
\frac{d h}{d t}=\frac{3 \frac{\pi}{4}\left(\frac{1}{12}\right)^{2}+2 \frac{\pi}{4}\left(\frac{3}{12}\right)^{2}}{2}=0.057 \mathrm{ft} / \mathrm{s}
$$

Mass Balance
(see example 2.1 in the textbook)

CHE 204, Prepared by: Dr. Usamah Al-Mubaiyedh

The tank shown in the figure below has a volume $V=1 \mathrm{~m}^{3}$ and contains air that is maintained at a constant temperature by being in thermal equilibrium with its surroundings.

If the initial absolute pressure is $P_{0}=1$ bar, how long will it take for the pressure to fall to a final pressure of 0.0001 bar if the air is evacuated at a constant rate of $v=0.001 \mathrm{~m}^{3} / \mathrm{s}$.

Solution:

(a) Mass Balance: $\quad m_{\text {in }}-m_{\text {out }}=\frac{d}{d t}\left(\mathrm{M}_{\text {system }}\right), \quad\left(m_{\text {in }}=0\right)$

$$
0-\rho_{\text {out }} v=\frac{d}{d t}\left(\rho_{\text {syst. }} V\right), \quad(V=\text { constant })
$$

$$
\rho_{\mathrm{out}}=\rho_{\mathrm{syst}}=\rho=\frac{P M_{\mathrm{w}}}{R T} \quad \text { (for I.G.) }
$$

$$
-v \frac{P M_{\mathrm{w}}}{R T}=V \frac{d}{d t}\left(\frac{P M_{\mathrm{w}}}{R T}\right) \quad\left(\frac{M_{\mathrm{w}}}{R T}=\text { constant }\right)
$$

Simplify $\quad \frac{d P}{d t}=-\frac{v}{V} P$

$$
\begin{aligned}
& \int_{P_{0}}^{P} \frac{d P}{P}=\int_{0}^{t}-\frac{v}{V} d t \\
& P=P_{0} \quad e^{-\frac{v}{V} t}
\end{aligned}
$$

Or

$$
t=-\frac{V}{v} \ln \left(\frac{P}{P_{0}}\right)=-\frac{1}{0.001} \ln \left(\frac{0.0001}{1}\right)=9210 \mathrm{~s}=2.56 \mathrm{hr}
$$

