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First we start with the continuity equation in Cartesian coordinates: 

Solution: 
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For incompressible fluid, the density is constant: 

0=
∂
∂

+
∂

∂
+

∂
∂

z
v

y
v

x
v zyx  

Since the flow is in the x-direction only, then we have only one component of 
the velocity 0 and   0 ==≠ zyx vvv , continuity equation simplifies to:  
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Conclusion the simplified continuity equation implies that vx

 

 is not a function of 
x
 

vx

 
 ≠ f(x)
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Also, for wide plates in z-direction, ( )zfvx ≠
  

Second we use the Navier-Stokes equations in Cartesian coordinates: 
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To simplify Navier-Stokes equations we can utilize the following results: 
 

1. Steady state: ( ) 0any thing
=

∂
∂

t
 

2. Plates are wide in z-direction: ( ) 0any thing
=

∂
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z
 

3. We have one component of the velocity 0 and   0 ==≠ zyx vvv  
4. vx ≠ f(x, z) it is only a function of y: vx
5. g

 = f(y). 
x = gz = 0. Only we have gravity in y direction gy

 
 = -g. 

Therefore the N-S equations simplify to: 
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Pressure Profile: 

Integrate equation (2): 

( )xfygpg
y
p
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Note for we integrated the pressure with respect to y, hence the constant of 
integration is not a function of y but could be a function of x. In pressure driven 
flows like this problem the pressure changes linearly along the direction of the 
flow: 
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( )bxaygp        ++−=⇒ ρ  

 

 

Now we apply boundary conditions for the pressure: 
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Therefore, the pressure profile is given by: 
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Velocity Profile: 

Recall equation (1): 
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Integrate the above equation once: 
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P = P1 P = P2 Pressure Driven Flow 
P1 > P2 
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Integrate second time: 
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To find the constants of integration apply the following Boundary Conditions: 

( )plates  twoebetween thcenter at  maximum isVelocity          0        0 ==
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dv
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( )ConditionBoundary  Slip-No           0        == xvdy  
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Rearrange: 
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The above equation is similar to an equation of a parabola and hence the 
velocity profile is called a parabolic velocity profile, see figure below:  
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P = P1 P = P2 Pressure Driven Flow 
P1 > P2 

Parabolic Velocity Profile 
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Volumetric Flow Rate: 
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A
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In this problem:  
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If we consider the volumetric flow rate per unit width W = 1: 
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Maximum Velocity: 
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 Shear Stress: 
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Recall simplifications: 

1. ( ) 0any thing
=

∂
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z
 

2. 0 and   0 ==≠ zyx vvv  
3. vx ≠ f(x, z) it is only a function of y: vx

This leads to the following simplifications: 

 = f(y). 
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Therefore, the only nonzero stresses are: 
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P = P1 P = P2 Pressure Driven Flow 
P1 > P2 

Shear Stress Profile 
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