Example 6.1—Flow Between Parallel Plates

Fig. E6.1.1 shows a fluid of viscosity x that flows in the z direction between
two rectangular plates, whose width is very large in the z direction when compared
to their separation in the y direction. Such a situation could occur in a die when
a polymer is being extruded at the exit into a sheet. which is subsequently cooled
and solidified. Determine the relationship between the flow rate and the i)l'essure
drop between the inlet and exit, together with several other quantities of interest.
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Fig. E6.1.1 Geometry for flow through a rectangular duct. The
spacing between the plates is exaggerated in relation to their length.

Solution:

First we start with the continuity equation in Cartesian coordinates:

a_p+a(p\/x)+a(p\IY)+a(pvz)
ot ox oy oz

=0

For incompressible fluid, the density is constant:

aVx 8Vy aVz
+ + =
oXx oy oz

0

Since the flow is in the x-direction only, then we have only one component of
the velocity v, =0 andv, =v, =0, continuity equation simplifies to:

ov,, 0
OX

Conclusion the simplified continuity equation implies that v, is not a function of
X

Vy 7 f(X)
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Also, for wide plates in z-direction, v, = f(z)

Second we use the Navier-Stokes equations in Cartesian coordinates:

avx+v aVx+v 6VX+V oy ——@+ 82V"+62VX+82VX + 9
Plat " ax oy e ) ax Ml oy a a
ov oV ov ov o*v, 0o, 0%
Pl —+V, —+V, —+V, — =—8—p+y >+ ——+— |+ 09,
ot OX oy oz oy OX oy oz
ov, ov, ov, ov, op o%v, 0%, 0%,
P2 +V, =4V, —+V, =——+u + + +p9,.
ot OX oy 0z oz

ox*> oy* ozt
To simplify Navier-Stokes equations we can utilize the following results:

1. Steady state:

o(any thing) _ 0
ot

d(any thing)

0z
We have one component of the velocity v, #0 andv, =v, =0

vy 7 f(x, 2) itis only a function of y: v, = f(y).
0x = 9, = 0. Only we have gravity in y direction g, = -g.

Plates are wide in z-direction: =0

GOk w D

Therefore the N-S equations simplify to:

op d?v

0=-2L x 1
o T H 0y’ 1)
op

0=-—-p9 (@)
oy

0=0 (3)

Pressure Profile:
Integrate equation (2):

P _

-9 = p=-pgy+fx)
oy

Note for we integrated the pressure with respect to y, hence the constant of
integration is not a function of y but could be a function of x. In pressure driven
flows like this problem the pressure changes linearly along the direction of the

flow:
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f(x)=a x+ b

=p=-pgy+(@x+bh)

Now we apply boundary conditions for the pressure:

@ x=0andy=0 - p=p,
@ x=Landy=0—> p=p,

p,=—pg(0)+(a 0+ b)}: p,—p, AP

p,=—pg@+@L+b)f 27 L L T PTh

Therefore, the pressure profile is given by:
AP
p=—pgy+[TX+ plj (4)

Velocity Profile:

Recall equation (1):

2
0:—@+,ud sz
OX dy

From equation (4): ‘2—2 = A—Lp, substitute in equation (1):

Integrate the above equation once:
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dv, 1Ap

=—""y+C,
dy u« L
Integrate second time:
1 Ap
v, =———Yy“ +C,y+C
X 2/1 L y 1y 2

To find the constants of integration apply the following Boundary Conditions:

dv - ,
r ~=0 (Velocity is maximum at center between the two plates)
y

y=d v, =0 (No - Slip Boundary Condition)

0-1280,c, -~ C,=0
u L

0-1 24 cyic, = c,--12g
u L 2u L

1 Ap.. _iﬂdz

vV, = y
2u L 2u L
Rearrange:
1 Ap 2 2
=——(y"—d
o 2u L (y )

The above equation is similar to an equation of a parabola and hence the
velocity profile is called a parabolic velocity profile, see figure below:

Parabolic Velocity Profile

; T f
L — 5,
P=P, X,... Pressure Driven Flow \— 3 ... Vo P=P,
Pl > Pg %
>
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Volumetric Flow Rate:
Q=]v, dA
A
In this problem:

dA=dydz

W +d

Q:J"[vxdydz
0—d

If we consider the volumetric flow rate per unit width W = 1:

+d
= vady
d
1 Ap ) 1 Ap(y
Q= ~d* )y = ——(——d y
J. 2 L\ 3 »
2d3 —-A
Q="
3u L
Maximum Velocity:
_ _ 1 _Ap 2
Viax =V, o = 2,[1 i —d
Mean Velocity:
2d° —Ap
_ Q(perunitwidth)  3x L d®-Ap _2,
™ A(perunit width) 2d 3y L 3"

Shear Stress:

aVx aVx 8Vy aVx aVZ
2 + +
. OX oy Ox oz oX
XX Xy XZ avy av avy avy av
Ty Ty Ty |=H|—+— 2— —+—=
oX oy oy oz oy
TZX TZ TZZ
’ avz aVx aVz av)’ aVz
+ + 2
oX oz oy oz 0z
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Recall simplifications:

d(any thing)
oz
2. v, #0 andv, =v, =0

3. vy = f(x, 2) itis only a function of y: v, = f(y).

1. =0

This leads to the following simplifications:

0 ["Wj 0
Txx z-><y Ty ov ay
T Ty Ty |=M x 0 0
y vy y ( ay j
T sz Ty 0 0 O

Ap=p,—p, =-Vve
ifyis+ve = r,is —ve

ifyis-ve = z,is +ve

Shear Stress Profile

L
P=P, X,.._. Pressure Driven Flow

P1>P2
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