Pressure Drop in Packed Beds

Example 1

Water ($\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}, \mu=1^{*} 10^{-3} \mathrm{~kg} / \mathrm{m} \mathrm{s}$) flows through a horizontal duct that has a rectangular cross section at a mass flow rate $2 \mathrm{~kg} / \mathrm{s}$, see figure below. The duct is packed with $9,000,000$ small cylinders each with diameter $D_{\text {cylinder }}=1 \mathrm{~mm}$ and length $L_{\text {cylinder }}=2$ mm . Calculate the pressure drop across the duct.

Solution:

First of all we have to calculate the superficial velocity \boldsymbol{u}_{0}, effective particle diameter \boldsymbol{D}_{P} and void fraction ε. For details see Table 4.2 of the textbook:

$$
\begin{aligned}
u_{0} & =\frac{Q}{A}=\frac{m / \rho}{A}=\frac{2 / 1000}{(0.1)(0.2)}=0.1 \mathrm{~m} / \mathrm{s} \\
a_{\mathrm{v}} & =\frac{\text { total external surface area of particle }}{\text { volume of particle }} \\
& =\frac{2\left(\frac{\pi}{4} D_{\text {particle }}^{2}\right) 2+\pi D_{\text {particle }} L_{\text {particle }}}{\frac{\pi}{4} D_{\text {particle }}^{2} L_{\text {particle }}}=\frac{2\left(\frac{\pi}{4}(0.001)^{2}\right)+\pi(0.001)(0.002)}{\frac{\pi}{4}(0.001)^{2} *(0.002)}=5000 \frac{1}{\mathrm{~m}}
\end{aligned}
$$

$D_{P}($ effective particle diameter $)=6 / a_{v}=6 / 5000=1.2 \times 10^{-3} \mathrm{~m}$

$$
\begin{aligned}
\varepsilon & =\frac{\text { Volume of Duct }- \text { Valume of all Particles }}{\text { Volume of Duct }} \\
& =\frac{(0.1)(0.2)(1)-9,000,000 \frac{\pi}{4} D_{\text {cylinder }}^{2} L_{\text {cylinder }}}{(0.1)(0.2)(1)}=0.293
\end{aligned}
$$

Pressure Drop in Packed Beds

For horizontal packed beds the Ergun equation [4.26] of the textbook is applicable:

$$
-\frac{\Delta P}{\rho u_{0}^{2}} \frac{D_{P}}{L} \frac{\varepsilon^{3}}{1-\varepsilon}=\left[\frac{150}{\operatorname{Re}}+1.75\right]
$$

Rearranging to solve for the pressure drop:

$$
\begin{aligned}
-\Delta P & =\left[\frac{150}{\operatorname{Re}}+1.75\right] \rho u_{0}^{2} \frac{L}{D_{P}} \frac{1-\varepsilon}{\varepsilon^{3}} \\
\operatorname{Re} & =\frac{\rho u_{0} D_{P}}{(1-\varepsilon) \mu}=\frac{(1000)(0.1)\left(1.2 * 10^{-3}\right)}{(1-0.293)\left(1 * 10^{-3}\right)}=169.7 \\
-\Delta P & =\left[\frac{150}{169.7}+1.75\right](1000)(0.1)^{2} \frac{1}{1.2 * 10^{-3}} \frac{1-0.293}{(0.293)^{3}}+(1000)(9.8)(0) \\
& =616,931.1 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}(\text { Pascals })=6.09 \mathrm{~atm}
\end{aligned}
$$

Pressure Drop in Packed Beds

Example 2

A tank drains water by gravity through an exit pipe of diameter 1 m , see shown figure below. The exit pipe is packed with sand particles (there is no sand in the tank itself). The sand particles are uniform, with an average diameter of 0.2 mm and void fraction of 0.3 . Calculate the volumetric flow rate of water in gal/min (gpm).

Recall the Ergun equation for non-horizontal packed beds:

$$
-\frac{\Delta P}{\rho u_{0}^{2}} \frac{D_{P}}{L} \frac{\varepsilon^{3}}{1-\varepsilon}=\left[\frac{150}{\operatorname{Re}}+1.75\right]+\frac{1}{u_{0}^{2}} \frac{D_{P}}{L} \frac{\varepsilon^{3}}{1-\varepsilon} g \Delta z
$$

The above equation is similar to equation [4.26] of the textbook, however, it is more general to account for non-horizontal beds. Hence, equation [4.26] is for the special case when $\Delta z=$ 0 . Rearranging the Ergun equation, the following equation can be written for the pressure drop across non-horizontal packed beds:

$$
-\frac{\Delta P}{\rho}=\overbrace{\left[\frac{150}{\mathrm{Re}}+1.75\right] u_{0}^{2} \frac{L}{D_{P}} \frac{1-\varepsilon}{\varepsilon^{3}}}^{\text {Pressure drop due to friction }}+\overbrace{g \Delta z}^{\text {Pressure drop due tog ravity }}
$$

Once again the above equation is similar to equation [4.29] of the textbook, however, it is more general to account for non-horizontal beds. Hence, equation [4.29] is for the special case when $\Delta z=0$.

Pressure Drop in Packed Beds

$$
\operatorname{Re}=\frac{\rho u_{0} D_{P}}{(1-\varepsilon) \mu}
$$

Substitute in the Ergun equation

$$
-\frac{\Delta P}{\rho u_{0}^{2}} \frac{D_{P}}{L} \frac{\varepsilon^{3}}{1-\varepsilon}=\left[\frac{150(1-\varepsilon) \mu}{\rho u_{0} D_{P}}+1.75\right]+\frac{1}{u_{0}^{2}} \frac{D_{P}}{L} \frac{\varepsilon^{3}}{1-\varepsilon} g \Delta z
$$

Multiply the above equation by u_{0}^{2} :

$$
-\frac{\Delta P}{\rho} \frac{D_{P}}{L} \frac{\varepsilon^{3}}{1-\varepsilon}=\left[\frac{150(1-\varepsilon) \mu}{\rho D_{P}} u_{0}+1.75 u_{0}^{2}\right]+\frac{D_{P}}{L} \frac{\varepsilon^{3}}{1-\varepsilon} g \Delta z
$$

and rearrange:

$$
(1.75) u_{0}^{2}+\left(\frac{150(1-\varepsilon) \mu}{\rho D_{P}}\right) u_{0}+\left(\frac{\Delta P}{\rho}+g \Delta z\right) \frac{D_{P}}{L} \frac{\varepsilon^{3}}{1-\varepsilon}=0
$$

Calculate the change pressure change across the bed:

$$
\Delta P=P_{2}-P_{1}=\left(P_{\mathrm{atm}}\right)-\left(P_{\mathrm{atm}}+\rho g 100\right)=-9.8 * 10^{5} \text { Pascals }
$$

Substituting:

$$
(1.75) u_{0}^{2}+\left(\frac{150(1-0.3)(0.001)}{(1000)\left(0.2 * 10^{-3}\right)}\right) u_{0}+\left(\frac{-9.8 * 10^{5}}{(1000)}+(9.8)(-20)\right) \frac{0.2 * 10^{-3}}{20} \frac{0.3^{3}}{1-0.3}=0
$$

Simplifying:

$$
\begin{aligned}
& (1.75) u_{0}^{2}+(0.525) u_{0}-\left(4.54 * 10^{-4}\right)=0 \\
& \Rightarrow u_{0}=\frac{-0.525 \pm \sqrt{0.525^{2}-4(1.75)\left(-4.54 * 10^{-4}\right)}}{2(1.75)}=\frac{-0.525 \pm 0.528}{2(1.75)} \\
& u_{0}=8.57 * 10^{-4} \mathrm{~m} / \mathrm{s} \text { or }-0.3 \mathrm{~m} / \mathrm{s} \text { (reject negative value) } \\
& Q=\frac{\pi}{4} D^{2} u_{0}=\frac{\pi}{4}(1)^{2}\left(8.57 * 10^{-4}\right)=6.73 * 10^{-4} \mathrm{~m}^{3} / \mathrm{s}=10.67 \mathrm{gpm}
\end{aligned}
$$

