Settling of Particles

Example 1

A stainless steel sphere has a diameter 1 mm and a density of $7870 \mathrm{~kg} / \mathrm{m}^{3}$. Calculate the terminal velocity of the sphere for the following two cases:
(a) The sphere is dropped in polymer of density $1052 \mathrm{~kg} / \mathrm{m}^{3}$ and viscosity $0.1 \mathrm{~kg} / \mathrm{m} \mathrm{s}$.
(b) The sphere is dropped in kerosene of density $765.52 \mathrm{~kg} / \mathrm{m}^{3}$ and viscosity 0.00818 $\mathrm{kg} / \mathrm{m} \mathrm{s}$.

Solution:

$$
C_{D}=\frac{4}{3} \frac{g D}{u_{t}^{2}} \frac{\rho_{S}-\rho_{f}}{\rho_{f}}=\frac{4}{3} \frac{(9.8)\left(1 * 10^{-3}\right)}{u_{t}^{2}} \frac{7870-\rho_{f}}{\rho_{f}}=\frac{0.0131}{u_{t}^{2}} \frac{7870-\rho_{f}}{\rho_{f}}
$$

(a) $\quad \rho_{f}=1052 \mathrm{~kg} / \mathrm{m}^{3}, \mu_{f}=0.1 \mathrm{~kg} / \mathrm{m} \mathrm{s}$
$C_{D}=\frac{0.0131}{u_{t}^{2}} \frac{7870-1052}{1052}=\frac{0.0847}{u_{t}^{2}}$

Assume laminar flow $(\operatorname{Re} \leq 1) \quad \rightarrow \quad C_{D}=\frac{24}{\operatorname{Re}}$
$\frac{24 \mu}{\rho_{f} u_{t} D}=\frac{0.0847}{u_{t}^{2}}, \quad$ Solve for $u_{t}=0.037 \mathrm{~m} / \mathrm{s}$,

Check $\operatorname{Re}=\frac{\rho_{f} u_{t} D}{\mu}=\frac{(1052)(0.037)\left(1 * 10^{-3}\right)}{0.1}=0.39$
$R e<1 \rightarrow \quad$ assumption of laminar flow was correct $\quad u_{t}=0.037 \mathrm{~m} / \mathrm{s}$

Settling of Particles

(b) $\quad \rho_{f}=765.52 \mathrm{~kg} / \mathrm{m}^{3}, \mu_{f}=0.00818 \mathrm{~kg} /(\mathrm{m} . \mathrm{s})$
$C_{D}=\frac{4}{3} \frac{g D}{u_{t}^{2}} \frac{\rho_{s}-\rho_{f}}{\rho_{f}}=\frac{0.0131}{u_{t}^{2}} \frac{7870-765.52}{765.52}=\frac{0.1216}{u_{t}^{2}}$

Assume laminar $(\mathrm{Re} \leq 1) \quad \rightarrow C_{D}=\frac{24}{\mathrm{Re}}$
$\frac{0.1216}{u_{t}^{2}}=\frac{24 \mu}{\rho_{f} u_{t} D}=\frac{24(0.1)}{(765.52) u_{t}\left(1 * 10^{-3}\right)} \quad$ Solve for $u_{t}=0.474 \mathrm{~m} / \mathrm{s}$

Check $\operatorname{Re}=\frac{\rho_{f} u_{t} D}{\mu}=\frac{(765.52)(0.474)\left(1 * 10^{-3}\right)}{0.00818}=44.4$

Re>1 \rightarrow laminar assumption was wrong,

Assume transition $1<\operatorname{Re} \leq 1000$
$C_{D}=\frac{0.1216}{u_{t}^{2}}=\frac{18}{\operatorname{Re}^{0.6}}=\frac{18 \mu^{0.6}}{\rho_{f}^{0.6} u_{t}^{0.6} D^{0.6}} \quad$ solve for $u_{t}=0.1970 \mathrm{~m} / \mathrm{s}$

Check Re $=\frac{\rho_{f} u_{t} D}{\mu}=\frac{(765.52)(0.1970)\left(1 * 10^{-3}\right)}{0.00818}=18.4$
$1<\mathrm{Re}<1000 \rightarrow$ transition assumption was correct and $u_{t}=0.197 \mathrm{~m} / \mathrm{s}$

Settling of Particles

Example 2

A sphere of 2.2 mm diameter is dropped in water ($\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}, \mu=1 * 10 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$). The sphere falls a distance of 10.5 cm in 21 seconds. Assuming steady state conditions:
(a) Calculate the density of the sphere.
(b) If the above sphere is dropped in a fluid of a specific gravity of 0.81 and its terminal velocity was measured as $2.05 \mathrm{~cm} / \mathrm{s}$, calculate the viscosity of the fluid.

Solution:

(a) $\mathrm{D}=2.2 \mathrm{~mm}=2.2 * 10^{-3} \mathrm{~m}, \rho_{f}=1000 \mathrm{~kg} / \mathrm{m}^{3}, \mu=1^{*} 10^{-3} \mathrm{~kg} / \mathrm{m} \mathrm{s}, u_{t}=10.5 / 21 \mathrm{~cm} / \mathrm{s}=0.005$ m / s

$$
\operatorname{Re}=\frac{(1000)\left(5 * 10^{-3}\right)\left(2.2 * 10^{-3}\right)}{1 * 10^{3}}=11 \quad \rightarrow \quad 1<\operatorname{Re} \leq 1000 \text { (transition) }
$$

For Transition: $\quad C_{D}=\frac{18}{\operatorname{Re}^{0.6}}=\frac{18}{(11)^{0.6}}=4.27$
$C_{D}=\frac{4}{3} \frac{g D}{u_{t}^{2}} \frac{\rho_{S}-\rho_{f}}{\rho_{f}}=4.27$
$4.27=\frac{4}{3} \frac{(9.8)\left(2.2 * 10^{-3}\right)}{(0.005)^{2}} \frac{\rho_{S}-1000}{1000} \quad \rightarrow \quad \rho_{S}=1003.7 \mathrm{~kg} / \mathrm{m}^{3}$
(b) $\quad \rho_{f}=(0.81)(1000)=810 \mathrm{~kg} / \mathrm{m}^{3}$
$C_{D}=\frac{4}{3} \frac{g D}{u_{t}^{2}} \frac{\rho_{S}-\rho_{f}}{\rho_{f}}=\frac{4}{3} \frac{(9.8)\left(2.2 * 10^{-3}\right)}{\left(2.05 * 10^{-2}\right)^{2}} \frac{1003.7-810}{810}=16.4$

We know C_{D} but don't know Re:

Assume laminar $(\mathrm{Re}<1) \rightarrow C_{D}=\frac{24}{\mathrm{Re}}=16.4 \quad \Rightarrow \quad \mathrm{Re}=1.46 \quad$ Assumption was wrong

Assume Transition $(1<\operatorname{Re} \leq 1000) \quad \rightarrow \quad C_{D}=\frac{18}{\operatorname{Re}^{0.6}}=16.4$
$\Rightarrow \quad \mathrm{Re}=1.17 \quad$ Transition assumption was correct
$\operatorname{Re}=\frac{(810)\left(2.05 * 10^{-3}\right)\left(2.2 * 10^{-3}\right)}{\mu}=1.17 \quad \Rightarrow \quad \mu=0.031 \frac{\mathrm{~kg}}{\mathrm{~m} \mathrm{~s}}$

Settling of Particles

Example 3

Lead particles of diameter 3 mm are manufactured by spraying hot molten lead of density $11400 \mathrm{~kg} / \mathrm{m}^{3}$ from the top of a spray tower in which the hot lead droplets are cooled by the surrounding stagnant air of density $1.21 \mathrm{~kg} / \mathrm{m}^{3}$ and viscosity $18.3 \times 10^{-6} \mathrm{~kg} / \mathrm{m} \mathrm{s}$. By the time they fall a distant \boldsymbol{H} to the base of the tower they solidify and quench in a cold water bath as shown in the figure below.

You are designing the spray tower and you are told by a heat transfer expert that molten lead particles need about 10 seconds to solidify if they fall freely in air. Perform the following:
(a) Assuming steady state, calculate the particle terminal velocity (steady state velocity) and based on that calculate the height of the tower \boldsymbol{H}. In this case you assume that the particles reach terminal velocity in a very short time $\ll 10 \mathrm{~s}$.
(b) Do not assume steady state but assume that the drag coefficient is constant and it is equal to that calculated by steady state approximation. Calculate the particle velocity as a function of time and calculate the height of the tower \boldsymbol{H}

Solution:

(a) Recall for steady state:

$$
C_{D}=\frac{4}{3} \frac{g D}{u_{t}^{2}} \frac{\rho_{S}-\rho_{f}}{\rho_{f}}=\frac{4}{3} \frac{(9.8)\left(3 * 10^{-3}\right)}{u_{t}^{2}} \frac{11400-1.21}{1.21}=\frac{369.28}{u_{t}^{2}}
$$

Because we have high density particles falling in low density and low viscosity air, they are expected to have high velocities and hence we can assume turbulent flow. However, we have to validate our assumption after calculating u_{t} to ensure that $R e>1000$.

Settling of Particles

For turbulent flow (Re>1000), $C_{D}=0.44$

$$
C_{D}=0.44=\frac{369.28}{u_{t}^{2}} \quad \text { solve for } u_{t}=29.0 \mathrm{~m} / \mathrm{s}
$$

Check $\operatorname{Re}=\frac{\rho_{f} u_{t} D}{\mu}=\frac{(1.21)(29)\left(3 * 10^{-3}\right)}{18.3 * 10^{-6}}=5752.5>1000$
Indeed the turbulent assumption was valid and $\underline{\boldsymbol{u}}_{t}=\mathbf{2 9 . 0} \mathbf{~ m} / \mathrm{s}$
For steady state $H=u_{t} \times t=29 \times 10=290 \mathrm{~m}$
(b) Recall equation (E4.2.5) of the textbook for unsteady state particle velocity when the fluid density is very small compared to the particle density $\left(1-\rho_{f} / \rho_{s}\right) g \approx g$:

$$
\begin{aligned}
& u=\sqrt{\frac{g}{c}} \frac{e^{(2 \sqrt{g c}) t}-1}{e^{(2 \sqrt{g c}) t}+1} \\
& c=\frac{3 \rho_{f} C_{D}}{4 D \rho_{s}}=\frac{3(1.21)(0.44)}{4\left(3 \times 10^{-3}\right)(11400)}=0.012 \\
& u=\sqrt{\frac{9.8}{0.012}} \frac{e^{(2 \sqrt{9.8 x 0.012}) t}-1}{e^{(2 \sqrt{9.8 \times 0.012}) t}+1}=28.6 \frac{e^{0.69 t}-1}{e^{0.69 t}+1}
\end{aligned}
$$

The figure below shows u as a function of time calculated by using the above equation. It is clear that the particle reaches the terminal velocity (steady state) in 7 seconds.

Settling of Particles

The distant travelled by particle as function of time is given in equation (E4.2.7) of the textbook

$$
\begin{aligned}
& x=\frac{1}{2 c} \sqrt{\frac{g}{c}}\left[2 \ln \left(\frac{e^{(2 \sqrt{g c}) t}+1}{2}\right)-(2 \sqrt{g c}) t\right] \\
& H=\frac{1}{2(0.0117)}\left[2 \ln \left(\frac{e^{(2 \sqrt{9.8 \times 0.0117}) 10}+1}{2}\right)-(2 \sqrt{9.8 \times 0.0117}) 10\right]=230 \mathrm{~m}
\end{aligned}
$$

Conclusion: By assuming steady state for turbulent flow there is 26% error in calculating the height of the tower.

Settling of Particles

Example 4

Refer to the previous example but now the Lead particles are dropped immediately in an oil bath of density $911 \mathrm{~kg} / \mathrm{m}^{3}$ and viscosity $1 \mathrm{~kg} / \mathrm{m} \mathrm{s}$.

You are designing a spray tower for this case and you are told by the heat transfer expert that molten lead particles need about 1 second to solidify if they fall freely in oil. Perform the following:
(a) Assuming steady state, calculate the particle terminal velocity (steady state velocity) and based on that calculate the height of the tower \boldsymbol{H}. In this case you assume that the particles reach terminal velocity in a very short time $\ll 10 \mathrm{~s}$.
(b) Do not assume steady state but assume that the drag coefficient is constant and it is equal to that calculated by steady state approximation. Calculate the particle velocity as a function of time and calculate the height of the tower \boldsymbol{H}

Solution:

(a) $C_{D}=\frac{4}{3} \frac{g D}{u_{t}^{2}} \frac{\rho_{S}-\rho_{f}}{\rho_{f}}=\frac{4}{3} \frac{(9.8)\left(3 * 10^{-3}\right)}{u_{t}^{2}} \frac{11400-911}{911}=\frac{0.45}{u_{t}^{2}}$

Because the droplets are falling now in high density and high viscosity oil, they are expected to have low velocities and hence we can assume laminar flow. However, we have to validate our assumption after calculating $\boldsymbol{u}_{\mathrm{t}}$ to ensure that $\mathrm{Re} \leq 1$.

Assume laminar flow $(\mathrm{Re} \leq 1) \quad \rightarrow \quad C_{D}=\frac{24}{\mathrm{Re}}$

Settling of Particles

$$
\begin{aligned}
& \frac{24 \mu}{\rho_{f} u_{t} D}=\frac{0.45}{u_{t}^{2}} \Rightarrow \frac{24(1)}{(911) u_{t}\left(3 \times 10^{-3}\right)}=\frac{0.45}{u_{t}^{2}}, \quad \text { Solve for } u_{t}=0.051 \mathrm{~m} / \mathrm{s}, \\
& \text { Check } \mathrm{Re}=\frac{\rho_{f} u_{t} D}{\mu}=\frac{(911)(0.051)\left(3 \times 10^{-3}\right)}{1}=0.14 \leq 1 \\
& \text { The laminar assumption was valid } \quad u_{t}=0.051 \mathrm{~m} / \mathrm{s} \\
& \text { For steady state } H=u_{t} \times t=0.051 \times 1=0.051 \mathrm{~m}=5.1 \mathrm{~cm}
\end{aligned}
$$

(b) Recall equation (E4.2.5) of the textbook for unsteady state particle velocity when the fluid density is very small compared to the particle density $\left(1-\rho_{f} / \rho_{s}\right) g \approx g$:

$$
u=\sqrt{\frac{g}{c}} \frac{e^{(2 \sqrt{g c})_{t}}-1}{e^{(2 \sqrt{g c})_{t}}+1} \quad \text { where } \quad c=\frac{3 \rho_{f} C_{D}}{4 D \rho_{s}}
$$

Since the oil density is quite high $\left(1-\rho_{f} / \rho_{s}\right) g \neq g$ the above unsteady state velocity can be modified as follows:

$$
\begin{aligned}
& u=\sqrt{\frac{\left(1-\rho_{f} / \rho_{s}\right) g}{c}} \frac{e^{\left(2 \sqrt{\left(1-\rho_{f} / \rho_{s}\right) g c}\right)}}{e^{\left(2 \sqrt{\left(1-\rho_{f} / \rho_{s}\right) g c}\right)}+1} \\
& c=\frac{3 \rho_{f} C_{D}}{4 D \rho_{s}}=\frac{3(911)\left(\frac{24}{0.14}\right)}{4\left(3 \times 10^{-3}\right)(11400)}=3424.8
\end{aligned}
$$

$$
u=\sqrt{\frac{\left(1-\frac{911}{11400}\right) 9.8}{3424.8}} \frac{e^{\left(2 \sqrt{\left(1-\frac{911}{11400}\right) 9.8 \times 3424.8}\right) t}-1}{e^{\left(2 \sqrt{\left(1-\frac{911}{11400}\right) 9.8 \times 3424.8}\right) t}+1}=0.049 \frac{e^{337.1 t}-1}{e^{337.1 t}+1}
$$

Settling of Particles

The figure below shows u as a function of time calculated by the above equation. It is clear from the figure that the particle reaches a terminal velocity (constant velocity) in a very short time 0.01 sec .

The distant travelled by particle as function of time is given by equation (E4.2.7) of the textbook when the fluid density is very small compared to the particle density $\left(1-\rho_{f} / \rho_{s}\right) g \approx g:$

$$
x=\frac{1}{2 c}\left[2 \ln \left(\frac{e^{(2 \sqrt{g c}) t}+1}{2}\right)-(2 \sqrt{g c}) t\right]
$$

Since the oil density is quite high $\left(1-\rho_{f} / \rho_{s}\right) g \neq g$ the above equation can be modified as follows:

$$
\begin{aligned}
& x=\frac{1}{2 c}\left[2 \ln \left(\frac{e^{\left(2 \sqrt{\left(1-\rho_{f} / \rho_{s}\right) g c}\right) t}+1}{2}\right)-\left(2 \sqrt{\left(1-\rho_{f} / \rho_{s}\right) g c}\right) t\right] \\
& H=\frac{1}{2(3424.8)}\left[2 \ln \left(\frac{e^{337.1}+1}{2}\right)-337.1\right]=0.05 \mathrm{~m}=5 \mathrm{~cm}
\end{aligned}
$$

Settling of Particles

Note: The calculation of the above formula is not straight forward because $e^{337.1}=\infty$! See details below for simplification.

$$
\begin{aligned}
H & =\frac{1}{2(3424.8)}\left[2 \ln \left(\frac{e^{337.1}+1}{2}\right)-337.1\right]=\frac{1}{2(3424.8)}\left[2\left\{\ln \left(e^{337.1}+1\right)-\ln (2)\right\}-337.1\right] \\
& \approx \frac{1}{2(3424.8)}\left[2\left\{\ln \left(e^{337.1}\right)-\ln (2)\right\}-337.1\right] \approx \frac{1}{2(3424.8)}\left[2\left\{\ln \left(e^{337.1}\right)\right\}-337.1\right] \\
& \approx \frac{1}{2(3424.8)}[2\{337.1\}-337.1] \approx \frac{1}{2(3424.8)}[337.1]=0.05 \mathrm{~m}
\end{aligned}
$$

Conclusion: by assuming steady state for laminar flow there is small error in calculating the height of the tower. The problem reaches steady state in a very short time for laminar flow and hence it is safe to assume steady state for laminar flow.

