$$T = \begin{bmatrix} T_{11} & T_{10} & T_{12} \\ T_{01} & T_{00} & T_{02} \\ T_{21} & T_{20} & T_{22} \end{bmatrix}$$

$$\overset{\circ}{\underline{\delta}} = \begin{bmatrix}
2 & \frac{\partial v^{\dagger}}{\partial t} & + \frac{\partial}{\partial t} \left(\frac{v_{0}}{t} \right) + \frac{1}{t} \frac{\partial v_{1}}{\partial \theta} & \frac{\partial v_{z}}{\partial t} + \frac{\partial v_{1}}{\partial z} \\
2 & \frac{1}{t} \frac{\partial v_{0}}{\partial \theta} + \frac{v_{1}}{t} & \frac{\partial v_{0}}{\partial z} + \frac{1}{t} \frac{\partial v_{z}}{\partial \theta}
\end{bmatrix}$$

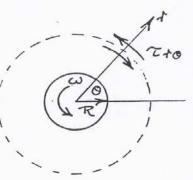
$$\overset{\circ}{\underline{\delta}} = \begin{bmatrix}
2 & \frac{\partial v_{1}}{\partial t} & + \frac{\partial v_{1}}{\partial \theta} & \frac{\partial v_{2}}{\partial t} & + \frac{\partial v_{1}}{\partial \theta} \\
2 & \frac{\partial v_{2}}{\partial z} & \frac{\partial v_{2}}{\partial z}
\end{bmatrix}$$

$$= \begin{bmatrix} 0 & +\frac{d}{dt} \left(\frac{V_0}{t} \right) & 0 & \\ +\frac{d}{dt} \left(\frac{V_0}{t} \right) & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad Assuming \quad \forall t = \forall z = 0$$

Assumuis
$$VI = VZ = 0$$

$$\frac{Q}{90} = 0$$

Strain take
$$\delta = \sqrt{\frac{1}{2}} I_2 = \sqrt{\frac{1}{2}} 2 \left[\frac{1}{d} \frac{d}{d} \left(\frac{V_0}{T} \right) \right]^2 = \left[\frac{1}{d} \frac{d}{d} \left(\frac{V_0}{T} \right) \right]$$


megative

O-Momentum, Steady stake, constant pressure

$$T_{+0} = K \left| \frac{d}{dt} \left(\frac{V_0}{t} \right) \right|^{n-1} + \frac{d}{dt} \left(\frac{V_0}{t} \right)$$

$$= -K \left[- + \frac{d}{dt} \left(\frac{V_0}{t} \right) \right]^n$$

$$492$$

$$\frac{d}{dt} \left\{ -t^2 \mathcal{K} \left[-t \frac{d}{dt} \left(\frac{v_0}{t} \right) \right]^n \right\} = 0$$

$$-t^2 \mathcal{K} \left[-t \frac{d}{dt} \left(\frac{v_0}{t} \right) \right]^n = c_1$$

$$-t \frac{d}{dt} \left(\frac{v_0}{t} \right) = \left(-\frac{c_1}{t^2 \mathcal{K}} \right)^{1/n} = \left(-\frac{c_1}{\mathcal{K}} \right)^{1/n} = \frac{1}{t^{2/n}}$$

$$\frac{d}{dt} \left(\frac{v_0}{t} \right) = -\left(-\frac{c_1}{\mathcal{K}} \right)^{1/n} = \frac{1}{t^{2/n+1}}$$

$$\frac{1 \text{ nfegtates to}}{C} \frac{V_0}{d} = \frac{n}{2} \left(\frac{-c_1}{\kappa}\right)^{\gamma_n} \frac{1}{+2/n} + c_2 \qquad (1)$$

Boundals Condition

$$t \rightarrow \infty$$
: $V_0 \rightarrow 0$: $C_2 = 0$

$$\frac{\omega R}{R} = \frac{n}{2} \left(-\frac{c_1}{\kappa} \right)^{1/n} \frac{1}{R^{2/n}}$$
 (2)

Divide (1) by (2) to eliminate e:

$$\frac{V_0}{\omega t} = \left(\frac{\mathcal{R}}{t}\right)^{2/n}$$

Limiting case of large n (dilatant behavior)
$$\left(\frac{R}{t}\right)^{2}n \rightarrow \infty \rightarrow 1 \quad \text{so} \quad V_{0} = \omega t$$

Muia Beliava as a solid-bods totation.

11.5-3

Sheat Stress

$$\gamma_{+0} = -K \left[-\frac{1}{d} \frac{d}{dt} \left(\frac{V0}{t} \right) \right]^{n}$$

$$= -K \left[-\frac{1}{t} \omega R^{2/n} \left(-\frac{2}{n} \right) \frac{1}{t^{2/n+1}} \right]^{n}$$

$$= -K \omega^{n} R^{2} \left(\frac{2}{n} \right)^{n} \frac{1}{t^{2}} = -K \left(\frac{2\omega}{n} \right)^{n} \frac{R^{2}}{t^{2}}$$

Torque Meeded to Rotak Rod

$$(\tau_{+0})_{+=R} = -\kappa \left(\frac{2\omega}{n}\right)^n$$

That is, The fluid exetts a stress on the tod in the negative of direction - opposite to the direction of totation.

Have totque in the O directron to totale tod is

$$\overline{I_0} = \left[\frac{2\pi RL}{\alpha H \alpha} \left(\frac{2\omega}{n} \right)^n \right] R$$
 Rever arm tadius

$$\overline{10} = 2\pi K^2 L K \left(\frac{2\omega}{n}\right)^m$$

Sheat-Thinning Wite Coating

Power-law fluid

 $\mathcal{T}_{tz} = \eta \, \dot{\delta}_{tz} = \kappa \, \dot{\delta}^{n-1} \, \dot{\delta}_{tz} = -\kappa \left(-\frac{dv_z}{dt} \right)^{n-1} \left(-\frac{dv_z}{dt} \right) = -\kappa \left(-\frac{dv_z}{dt} \right)^n$

Momentum Balance

$$\frac{1}{t}\frac{d}{dt}\left(t\,\mathcal{T}_{tz}\right)=0\;\;,\qquad \frac{d}{dz}\left[-\kappa t\left(-\frac{dv_z}{dt}\right)^n\right]=0$$

$$-k+\left(-\frac{dv_z}{dt}\right)^n=-c, \qquad -\frac{dv_z}{dt}=\left(\frac{c}{\kappa}\right)^{l_n}\frac{1}{t^{l_n}}$$

Integrate from wite to tadius +

$$-\int_{0}^{\sqrt{z}} dv_{z} = \left(\frac{c}{\kappa}\right)^{1/n} \int_{0}^{\sqrt{z}} \frac{dv}{v_{x}^{1/n}} = \left(\frac{c}{\kappa}\right)^{1/n} \frac{1}{q} \left(v_{x}^{2} - v_{x}^{4}\right)$$
where $q = 1 - \frac{1}{n}$

$$u-v_{z}$$

$$(n \neq 1)$$

$$V_z = u - \left(\frac{c}{\kappa}\right)^{\nu_n} \frac{1}{q} \left(t^2 - t^4\right)$$
 $shear-Thinning$

At the surface of the die, t=t2, vz = 0 Hence q is

Hence
$$\left(\frac{c}{\kappa}\right)^{n}\frac{1}{q} = \frac{u}{t_{2}^{q}-t_{1}^{q}}$$
 numerator a denominator

Velocity at any point is then $V_z = U - \frac{U(t^2 - t_1^2)}{t_1^2 - t_2^2} = U \frac{t^2 - t_2^2}{t_1^2 - t_2^2}$

Volumettic flow take

$$Q = \int_{2\pi}^{42} dt \, dt \, dt \, \frac{t^{\frac{q}{2}} - t^{\frac{q}{2}}}{t^{\frac{q}{2}} - t^{\frac{q}{2}}}$$

$$= \frac{2\pi u}{t^{\frac{q}{2}} - t^{\frac{q}{2}}} \int_{t_{1}}^{t_{2}} (t^{\frac{q+1}{2}} - t^{\frac{q}{2}}) dt$$

$$= \frac{2\pi u}{t^{\frac{q}{2}} - t^{\frac{q}{2}}} \left[\frac{t^{\frac{q+2}{2}} - t^{\frac{q+2}{2}}}{q+2} - \frac{t^{\frac{q}{2}}}{2} (t^{\frac{1}{2}} - t^{\frac{1}{2}}) \right]$$

Coatnis Thickness

Gram Continuity, Sinice velocity is uniformy
$$U$$
 $G = U Tr [(1,+5)^2 - 1,^2]$
 $O = Tr U (21,5+5^2)$

11.15-1

Determination of Constitutive Equation

Buigham Plastic

 $Q = \frac{\pi a^4}{2\eta} \left(-\frac{dp}{dz} \right) \left(\frac{1}{4} - \frac{\beta}{3} + \frac{\beta^4}{12} \right), \quad \beta = \frac{2\tau_0}{a(-dp/dz)}$

Power - Law Fluid

 $Q = \left(-\frac{dp}{dz} \frac{1}{2k}\right)^{n} \frac{\pi n a^{3+\frac{1}{n}}}{1+3k}$

Spreadsheet solution for best fit

Calculate predicted & based on above two Equations for assumed (To, n) or (n, K). Then use The Solver to minimize sum of squared differences between observed and predicted Q's

Power-law model is creatly the better fit, with

M = 0.437K = 6.709 kg sn-1

= 67.09 Ps⁴⁻¹

11.15-2

D: _ b	- Plactic		
Test for Binghai	n Plastic		
_	0.01	m	
a =	77.55	N/m^2	
tau_0 =	0.03265	kg/m s	
eta =	3.14159	Kg/III 5	
pi =	15,510		
factor =	15,510		
	Observed	Predicted	Squared
	Q	Q	Differences
(-dp/dz)		m^3/s	Billorollege
$Pa/m = N/m^3$	m^3/s	111373	
	4.445.00	9.54E-03	2.42E-06
100,000	1.11E-02	8.34E-03	6.07E-07
90,000	9.12E-03	7.14E-03	9.34E-11
80,000	7.13E-03		1.14E-06
70,000	4.87E-03	5.94E-03	1.91E-06
60,000	3.36E-03	4.74E-03	1.43E-06
50,000	2.35E-03	3.55E-03	1.45E-06
40,000	1.29E-03	2.36E-03	
30,000	6.89E-04	1.21E-03	· 2.68E-07
20,000	2.64E-04	2.08E-04	3.11E-09
10,000	5.37E-05	1.04E-03	9.64E-07
		Sum =	9.89E-06
Test for Power-Law Fluid			
n =	0.437	•	
K =	6.709	(kg/m s) s^(r	1-1)
const =			
[pi*n*a^(1/n + :	3)/(1 + 3*n)		
	Observed	Predicted	Squared
(-dp/dz)	Q	Q	Differences
Pa/m = N/m^3	m^3/s	m^3/s	
100,000	1.11E-02	1.13E-02	
90,000		8.91E-03	
80,000			
.70,000			2.11E-08
60,000			2.74E-08
50,000			6.79E-10
40,000			1.11E-08
40,000		T 00F 0	1 155 00