
z-Momentum Balance (cylindtical cootdmiates)

$$
\begin{aligned}
\rho \frac{D v_{z}}{\frac{\partial t}{D t}} & =\rho\left(\frac{\partial v_{z}}{\partial t}+v_{t} \frac{\partial v_{z}}{\partial t}+\frac{v_{\theta}}{r} \frac{\partial v_{z}}{\partial \theta}+v_{z} \frac{\partial v_{z}}{\partial z}\right) \\
& =-\frac{\partial p}{\partial z}+\mu\left[\frac{1}{\partial} \frac{\partial}{\partial t}\left(+\frac{\partial v_{z}}{\partial t}\right)+\frac{1}{\partial \theta^{2}} \frac{\partial^{2} v_{z}}{\partial \theta^{z}}+\frac{\partial^{2} v_{z}}{\partial z}\right]+\rho g_{z}
\end{aligned}
$$

As is ismptrions

1. Steang state

$$
\frac{d}{d t}+\frac{d v x}{d y}=3
$$

Inacerth Twict

$$
d \frac{d v_{s}}{d t} \equiv c_{1}
$$

$$
v_{2}=c_{1} b_{1}+c_{2}
$$

$$
6 \cdot 2-2
$$

Boundary Conditions

$$
\left.\begin{array}{ll}
r=r_{1}: & v_{z}=V \\
r=r_{2}: & v_{z}=0
\end{array}\right\} \text { fence } \quad \begin{aligned}
& c_{1}=-\frac{V}{\ln \left(t_{2} / t_{1}\right)} \\
& c_{2}=\frac{V \ln t_{2}}{\ln \left(t_{2} / t_{1}\right)}
\end{aligned}
$$

$\frac{\text { Velocity Profile }}{C}$

$$
v_{z}=V \frac{\ln \left(t_{2} / t\right)}{\ln \left(t_{2} / t_{1}\right)}=V \frac{\ln \left(t / r_{2}\right)}{\ln \left(t_{1} / r_{2}\right)}
$$

Volumetric How Rate

$$
\begin{aligned}
& Q=\int_{r_{1}}^{r_{2}} 2 \pi t d+\frac{V}{\ln \left(t_{1} / r_{2}\right)}\left(\ln t-\ln t_{2}\right) \quad=\frac{t^{2}}{2} \ln t-\frac{t^{2}}{4}
\end{aligned}
$$

$$
=\operatorname{va}\left(\theta^{2}+2+6\right)
$$

Move to Perk red

Assumptions

1. $\quad v_{z} \neq 0 ; \quad v_{t}=v_{\theta}=0$
2. Steady, constant ρ and μ.
3. Symmetry about z axis: $\frac{\partial v_{z}}{\partial \theta}=0$

Contrasty EDetram

$$
\frac{Q p^{2}}{\partial x}+\frac{1}{t} \frac{Q(p+1)}{\theta+}+\frac{1}{A} \frac{Q(\rho, Q)}{Q}+\frac{Q(\rho x)}{Q x}=0
$$

$$
\begin{aligned}
& \frac{C P}{D}=P \cdot \theta=\rho(-\sin \theta) \\
& \frac{10 p}{+00}=P, Q_{0}=p(-g \cos) \\
& \frac{\partial P}{\partial x}=\mu \frac{d}{t} \frac{d}{d t}\left(\frac{d v x}{d t}\right)
\end{aligned}
$$

$$
6.7-2
$$

Integrate r and θ momentum Balances

$$
\left.\begin{array}{r}
p=-p_{c} g+\sin \theta+f_{1}(z, \theta) \\
p=-p_{c} g+\sin \theta+f_{2}(z, \gamma)
\end{array}\right\} \begin{aligned}
& C_{1}(z, \theta)=f_{2}(z, t)=f(z)
\end{aligned}
$$

Pressure Vatiation in z direction
Assume (to be verified) a linear decline from p_{1} to p_{2} -Hence

$$
p=p_{1}-\frac{z}{L}\left(p_{1}-p_{2}\right)-\rho_{C}+\sin \theta
$$

Intestate z-momentum Balance Once

$$
\gamma \frac{d v_{z}}{d t}=-\frac{1}{2 \mu}\left(-\frac{\partial p}{\partial z}\right) r^{2}+c_{1}
$$

$\frac{\text { Integrate Again }}{C}$

$$
v_{z}=-\frac{1}{4 \mu}\left(-\frac{\partial p}{\partial z}\right) t^{2}+c_{1} \ln t+c_{2}
$$

Determination of Constants of Infestation
C_{1} must be zero, to avoid physically impossible infinite velocity at censer from c. $e_{n}+$ term
or Use symmetry that $\frac{d v_{z}}{d t}=0$ at $r=0$ whig g is the same result

At the wall, $r=a$:

$$
0=-\frac{1}{4 \mu}\left(-\frac{\partial p}{\partial z}\right)_{250}^{2}+c_{2} \text { or } c_{2}=\frac{1}{4 \mu}\left(\frac{\partial p}{\partial z}\right) a^{2}
$$

Wetted-Wall Column

Assume

1. Steady, cormorant P, μ.
2. $v_{x} \neq 0 ; \quad v_{y}=v_{z}=0$
3. $\frac{\partial v_{x}}{\partial z}=0 \quad 4 c_{x}=9$

$$
g_{y}=0
$$

Continuity (ρ constant)

$$
\nabla \cdot \bar{v}=\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z}=0
$$

Chance $\frac{\partial v_{x}}{\partial x}=0$ and so $v_{x}=v_{x}(y)$
$\frac{\text { Simplified Momentum Balances }}{9_{x}}$

$$
x: \frac{\partial p}{\partial x}=\mu \frac{d^{2} v_{x}}{d y^{2}}+p g^{g^{x}}
$$

y: $\frac{\partial p}{\partial y}=0 \quad \begin{aligned} & \text { That is, Thee is no variation of } \\ & \text { pressure horizontally actors the firm. }\end{aligned}$ Since the pressure outside the film is everywhere atmospheric $(p=0$, say $)$, The pressure everywhere inside the film must be $p=0$ also Hence $\partial p / \partial x=0$ and the x-momentum balance is

$$
\frac{d^{2} v_{x}}{d y^{2}}=-\frac{\rho s}{\mu}{ }_{265}
$$

