1. Do Problems 3.9, 3.10 and 3.13 of textbook.

Reynolds number
Re $=\frac{\rho u_{m} D}{\mu}$
$=\frac{51 \times u_{m} \times \frac{2.067}{12}}{4.38 / 3600}$
$\mathrm{Re}=7,220 \mathrm{um}$
Case 2 -type problem

$$
u_{m}=\sqrt{\frac{D}{2 f_{f} \rho_{L}}\left[\left(p_{1}-p_{2}\right)-\rho_{c} \Delta z\right]}
$$

$$
\begin{aligned}
& =\sqrt{\frac{2.067 / 12}{2 f_{6} \times 51 \times 150}[\underbrace{15 \times 144 \times 32.2-51 \times 32.2 \times 20}_{36,708}]} \\
& =\frac{0.643}{\sqrt{f_{F}}}
\end{aligned}
$$

Now toughness ratio is $\frac{\varepsilon}{D}=\frac{0.00015 \times 12}{2.067}=8.71 \times 10^{-4}$ ft / s

u_{m}	Re	f_{F}
-	-	0.005
9.09	65,654	0.0057
8.52	61,491	0.0058
8.44	60,958	0.0058

$$
\begin{aligned}
Q & =\frac{\pi D^{2} u m}{4} u m \\
& =\frac{\pi}{4}\left(\frac{2.067}{12}\right)^{2} \times 8.44 \\
& =0.197 \times 60 \times 7.48 \\
Q & =88.3 \mathrm{gmm}
\end{aligned}
$$

3.10

Lodge Watet Supply

Pressute ©Drop $-\Delta p=z f_{f} \rho u_{m}^{2} \frac{L}{\partial}+\rho_{\rho} \Delta z$

$C^{B}=0.220 x^{3} b^{3}$

$$
8=0.000 \%-48
$$

 $4=3 \cdot 40$ 40

3.13

Pumping and Piping

Energy (2) \rightarrow (3) $\frac{p_{3}-p_{2}}{p}+q\left(z_{3}-z_{2}\right)+2 f_{F} u_{m}^{2} \frac{\hbar}{D}=0$
How tare $Q=\frac{\pi^{2}}{4} u_{m}$ ot $u_{m}^{2}=\frac{16 Q^{2}}{\pi \pi^{2} D^{4}}$
Hence $p_{2}-p_{3}=\rho g\left(z_{3}-x_{2}\right)+\frac{32 f_{F} \rho Q^{2} L}{\pi^{2} D^{5}}$

$$
\begin{gathered}
=\frac{62.4 \times 32.2 \times 25}{32.2 \times 144}+\frac{32 f_{F} \times 62.4 \times Q^{2} \times 1000}{\pi^{2} \times\left(\frac{4.026}{12}\right)^{5} \times 32.2 \times 144} \\
p_{2}-p_{3}=10.83+10,265 f_{F} Q^{2}=\Delta p_{\text {pipe }}
\end{gathered}
$$

Ctost-section $A=\frac{\pi}{4}\left(\frac{4.026}{12}\right)^{2}=0.08844^{2}$
Roughness (comm. Steel) $k=\varepsilon=0.0018 \mathrm{~m} \quad \frac{\varepsilon}{D D}=\frac{0.0018}{4.026}=0.00045$
for large $\mathrm{Re}, \mathrm{F}_{\mathrm{F}}=0.0045$
Pump Equation $\Delta p_{\text {pump }}=19.2-133.4 \Phi^{4.5}$
Check on $f_{f} \quad u_{m}=\frac{0.38}{0.0884}=4.30$

$\frac{Q}{\text { P. } 3 / \mathrm{sec}}$	$\frac{\Delta p_{\text {pipe }}}{p_{\text {sic }}}$	
0.3	$\frac{\Delta p_{\text {pump }}}{p s i}$	
0.3 .99	18.61	
0.38	17.50	17.49
0.4	18.22	17.04

$$
\begin{aligned}
\mathrm{Re}_{\mathrm{Re}} & =\frac{62.4 \times 4.30 \times \frac{4.026}{12}}{1 \times 0.00672} \\
& =1.34 \times 10^{5} \\
f_{f} & =0.0045-\text { no change. }
\end{aligned}
$$

Further refinement not needed.
2. A 35° API distillate is being transferred from a storage tank at 1 atm absolute pressure to a pressure vessel at 50 psig by means of the piping arrangements shown in figure. The liquid flows at the rate of $23100 \mathrm{lb} / \mathrm{hr}$ through 3 -inch Schedule 40 steel pipe; the length of the straight pipe is 450 feet. Calculate the minimum horsepower input to the pump having an efficiency of 60 percent. The properties of the distillate are: viscosity $=3.4 \mathrm{cP}$, density $=52 \mathrm{lb} / \mathrm{ft} 3$. The following are the data for the pipe and fittings:
a. For 3 inch Schedule 40 Nominal pipe, $O D=3.5$ inch; Thickness $=0.216$ inch
b. Flow coefficients for the fittings (K) are:
i. Gate valve $=0.25 ; 90$ o elbow $=0.9$; Check valve $=10$
c. Friction factor can be calculated from Blasius equation. Account for entry and exit losses also.

Conversion Factors			
1 feet		0.3048	m
1 lb		0.454	kg
1 inch		0.0254	m
1 centipoise		0.001	$\mathrm{~kg} / \mathrm{m} . \mathrm{sec}$
1 atm		14.7	psi
1 atm		$1.01 \mathrm{E}+05$	$\mathrm{~N} / \mathrm{m}^{2}$
g		9.812	$\mathrm{~m} / \mathrm{sec}^{2}$

Data given:				Converted data:		
Mass flow rate		23100	$\mathrm{lb} / \mathrm{hr}$	$=$	2.913167	$\mathrm{kg} / \mathrm{sec}$
Density	ρ	52	$\mathrm{lb} / \mathrm{ft}^{3}$	=	833.7087	kg/m ${ }^{3}$
Viscosity	μ	3.4	cP	=	0.0034	kgm.sec
Pipe OD		3.5	inch			
Pipe thickness		0.216	inch			
Pipe length	L	450	feet	=	137.16	m
Vertical height	$\begin{gathered} \mathrm{z}_{1}- \\ \mathrm{z}_{2} \\ \hline \end{gathered}$	70	feet	=	21.336	m
Pump efficiency (in fraction)		0.6				
Loss coefficient of Gate Valve		0.25				
Loss coefficient of elbow		0.9				
Loss coefficient of check valve Valve		10				
Pipe ID	D	3.068	inch	=	0.077927	m

Pressure at 2	P_{2}	50	psig	$=1$	344642.9
$\mathrm{~N} / \mathrm{m}^{2}$					

Calculations:

Volumetric flow rate Velocity	Q v	$\begin{array}{r} \hline 0.00349 \\ 0.7326 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{m}^{3} / \mathrm{sec} \\ & \mathrm{~m} / \mathrm{sec} \end{aligned}$
Reynolds Number	NRe	13999	
Friction factor	f	0.00726	
hf_{f} of pipe		1.3985	m
$\mathrm{v}^{2} / 2 \mathrm{~g}$		0.02735	m
h_{f} of Gate valve		0.00684	m
h_{f} of 2 number of elbows		0.04923	m
$h_{\text {f }}$ of Check valve		0.27351	m
h_{f} of sudden contraction at inlet		0.01094	m
h_{f} of sudden expansion at outlet		0.02735	m
Total frictional head		1.76642	m
Pump head		22.561	m
Minimum power for the pump		1074.81	Watt

