The object of this column is to enhance our readers’ collections of interesting and novel problems in chemical engineering. Problems of the type that can be used to motivate the student by presenting a particular principle in class, or in a new light, or that can be assigned as a novel home problem, are requested, as well as those that are more traditional in nature and that elucidate difficult concepts. Manuscripts should not exceed 14 double-spaced pages and should be accompanied by the originals of any figures or photographs. Please submit them to Professor James O. Wilkes (e-mail: wilkes@umich.edu), Chemical Engineering Department, University of Michigan, Ann Arbor, MI 48109-2136.

GAS PERMEATION COMPUTATIONS WITH MATHEMATICA

Housam Binous

National Institute of Applied Sciences and Technology • 1080 Tunis, Tunisia

Gases separations using membranes have received increased attention by the scientific and industrial community. This technique is now at a mature stage and can compete with more common techniques used in the petrochemical industry such as cryogenic separation, gas absorption, and pressure swing adsorption. The nonporous membranes can be organic or inorganic. They are classified according to their thermal and chemical stability as well as their selectivity to different gases. The mechanism of separation is based on the differences in the dissolution and diffusion of gases in the nonporous membrane. The separation of hydrogen from other gases such as carbon dioxide and carbon monoxide in syngas plants is a very important industrial application of this technique. Acid gas (CO₂ and H₂S) elimination from natural gas is another application of membrane separations. Very often one is confronted with the separation of multicomponent mixtures. Thus, we consider a hypothetical ternary mixture, in the first part of the paper, to show how one can obtain the permeate and reject compositions as well as the membrane area.

SEPARATION OF A TERNARY MIXTURE

A ternary feed mixture has the following composition and flow rate:

\[x_{fA} = 0.25, \quad x_{fB} = 0.55, \quad x_{fC} = 0.2 \quad \text{and} \quad q_f = 1.0 \times 10^4 \text{ cm}^3 \text{ (STP)} / \text{s} \]

Since the stage cut, defined as the fraction of the feed allowed to permeate, is \(\theta = 0.25 \), the permeate flow rate, \(q_p \), is equal to \(0.25 \times 10^4 \text{ cm}^3 \text{ (STP)} / \text{s} \). The permeabilities, expressed in cm² (STP) cm/s cm² cmHg, of components A, B, and C...
are equal to

\[P_A = 200 \times 10^{-10}, \quad P_B = 50 \times 10^{-10}, \quad \text{and} \quad P_C = 25 \times 10^{-10}. \]

This mixture is to be separated by a membrane with a thickness \(t = 2.54 \times 10^{-3} \text{cm} \). Pressures on the feed and permeate sides are \(p_f = 300 \text{ cmHg} \) and \(p_p = 30 \text{ cmHg} \). We will use the complete-mixing model to compute the permeate and the reject compositions as well as the membrane area. The three rate-of-permeation equations are:

\[q_p y_p = \frac{P}{t} A_m (p_f x_f - p_i y_i) \quad \text{for} \quad i = 1, 2, 3 \] (1)

The three material balances equations written for components A, B, and C are:

\[x_i = \frac{1}{1 - \theta} x_{fi} - \frac{\theta}{1 - \theta} y_i \quad \text{for} \quad i = 1, 2, 3 \] (2)

Finally, we have an additional relation that is the summation rule for mole fractions:

\[\sum_{i=1}^{3} y_i = 1 \] (3)

Equations 1 through 3 are labeled rate, matbalance, and summation, respectively. We need to enter these equations in the Mathematica notebook[2] and call FindRoot as follows:

FindRoot[{rate1, rate2, rate3, matbalance1, matbalance2, matbalance3, summation1}, {y_p, 0.2}, {y_pa, 0.2}, {y_pb, 0.2}, {A_m, 10^6}, {x_ma, 0.2}, {x_mb, 0.2}, {x_mc, 0.2}, {x_mn, 0.2}] .

FindRoot uses different root search techniques that can be selected by the user. If one specifies only one starting value of the unknown, FindRoot searches for a solution using Newton methods. If the user specifies two starting values, FindRoot uses a variant of the secant method, which does not require the computation of derivatives. All this is handled internally by Mathematica, making the solution of complex systems of nonlinear algebraic equations very easy. We get the following solution for the permeate and reject compositions and the membrane area labeled \(A_m \):

\[\{ y_{pa} \rightarrow 0.455281, \quad y_{pb} \rightarrow 0.450286, \quad y_{pc} \rightarrow 0.0944335, \quad A_m \rightarrow 3.54176 \times 10^6, \quad x_{ma} \rightarrow 0.181573, \quad x_{mb} \rightarrow 0.583236, \quad x_{mc} \rightarrow 0.235189 \} \]

which is in agreement with results using a tedious iterative technique[1].

ENRICHMENT OF AIR IN OXYGEN USING MEMBRANE PERMEATION

In this section, we present the study of the enrichment of oxygen in air using a single-stage membrane module. This problem has been treated first by Walawender and Stern[3] and later by Geankoplis.[11] The binary mixture, A (oxygen) and B (nitrogen), has an ideal separation factor, the ratio of the permeabilities of the two species, \(\alpha = 10 \). The permeability of oxygen is \(P_A = 500 \times 10^{-10} \text{ cm}^3 (\text{STP}) \text{ cm/s cm}^2 \text{ cmHg} \). The membrane is more permeable to oxygen and has

Figure 1. Flow patterns.
a thickness \(t = 2.54 \times 10^{-3} \) cm. The stage cut, \(\theta \), is set equal to 0.2. The values of the pressures in the feed and permeate sides chosen by Geankoplis\(^{[1]}\) are \(p_f = 190 \) cmHg and \(p_i = 19 \) cmHg, which give a ratio of pressures, \(r \), equal to 10. The feed rate and composition are given by:

\[
x_{ia} = 0.209, \quad x_{ib} = 0.791 \text{ and } q_i = 1.0 \times 10^6 \text{ cm}^3/\text{s (STP)/s}.
\]

The different flow patterns, shown in Figure 1 (previous page) and considered in this study, are complete mixing, crossflow, countercurrent flow, and co-current flow. Calculations for each flow pattern will be presented in a separate subsection.

1. Complete-Mixing Case

The permeate mole fraction, \(y_p \), is the solution of the following quadratic equation:

\[
y_p = \frac{\alpha^* \left[x_O - \left(\frac{p_i}{p_h} \right) y_p \right]}{1 - y_p} \left(1 - x_O \right) - \left(\frac{p_i}{p_h} \right) \left(1 - y_p \right)
\]

where the reject composition, \(x_O \), is given by the mass balance:

\[
x_O = \frac{x_f - \theta y_p}{1 - \theta}
\]

We also define \(\alpha^* \) and \(r \) by \(\alpha^* = \left(\frac{p_i}{p_h} \right) \) and \(r = p_i/p_f \).

The membrane area is then obtained using Equation (6):

\[
A_m = \frac{\theta q t y_p}{P_A \left(p_h x_O - p_i y_p \right)}
\]

For our particular problem, we find the following results using Mathematica:

\[
y_p = 0.5067, \quad x_O = 0.1346, \quad \text{and } A_m = 3.228 \times 10^7 \text{cm}^2.
\]

These results are in agreement with those found by Geankoplis\(^{[1]}\)

2. Cross-Flow Case

The local permeate rates over a differential membrane area are given by

\[
- y dq = \left(\frac{P_A}{t} \right) \left(p_h x - p_i y \right) dA_m
\]

\[
- (1 - y) dq = \left(\frac{P_b}{t} \right) \left(p_h (1 - x) - p_i (1 - y) \right) dA_m
\]

In addition, we can derive Equation (9) from total and component mass balances:

\[
y dq = d(q x)
\]

These three governing equations are solved simultaneously using the Mathematica built-in function called NDSolve. The following boundary conditions are used:

\[
q_i = 1, \quad x_i = 0 \text{ and } y_i = 0.
\]

where \(y_i \) is obtained by solving the quadratic equation

\[
y_i = \frac{\alpha^* \left[x_f - \left(\frac{p_i}{p_h} \right) y_i \right]}{1 - y_i} \left(1 - x_f \right) - \left(\frac{p_i}{p_h} \right) \left(1 - y_i \right)
\]

The command used in the notebook to solve the system of ODEs is:

\[
\text{myODEsolve}[\Omega, \ldots] :=
\]

\[
\text{NDSolve}\{\{y[A], D[q[A]], \{A, 1, 1\}\}, \{D[q[A]], x[A], \{A, 1, 1\}\},
\]

\[
- y[A] = D[q[A]], \{A, 1\}\} = \frac{P_A}{t} \left(\left(\frac{p_i}{p_h} \right) y[A]\right),
\]

\[
- (1 - y[A]) = D[q[A]], \{A, 1\}\} = \frac{P_A}{t} \left(\left(\frac{p_i}{p_h} \right) x[A] \right) + \left(\frac{p_i}{p_h} \right), \{A, 0, \Omega}\}
\]

We use FindRoot to get the total membrane area. In fact, we must satisfy the following condition: \(\theta = 0.2 \) where the stage cut, \(\theta \), is given by \(\theta = (q_i - q_{\text{total}})/q_i \).

The Mathematica command is written as follows:

\[
\text{qend}[\Omega] := \text{Flatten}\{\{A, \ldots\} /. \text{myODEsolve}[\Omega]\} / \text{A} \rightarrow \Omega
\]

\[
A_{\text{total}} = \text{FindRoot}\{\{x, \text{qend}[\Omega] = \theta, \{\Omega, 2 \times 10^6, 3 \times 10^8\}, \text{MaxIterations} \rightarrow 1000\}
\]

The final result is a membrane area and a reject composition equal to: \(A_{\text{total}} = 2.899 \times 10^6 \text{cm}^2 \) and \(x_O = 0.1910 \). A component balance, \(\theta y_p + (1 - \theta) x_O = x_{ia} \), can be used to obtain the permeate mole fraction and we find that \(y_p = 0.5681 \). Our approach gives similar results as those given by Geankoplis\(^{[1]}\) but is far less tedious and more accurate. We can check our results by integrating \(y(A_m) \) for \(A_m \) varying from 0 to \(A_{\text{total}} \), achieved with the command:

\[
\text{Integrate}\{\text{First}[y[A]], \ldots, \text{qend}[\Omega] / \text{A}_{\text{total}}\} /. \text{A} \rightarrow \text{area},
\]

\[
\{\text{area}, 0, \Omega, \text{A}_{\text{total}}\} / \Omega / \text{A}_{\text{total}}
\]

We get \(y_p = 0.5636 \), a value in agreement with the previous result. Since numerical integration is used, the later value of
y_p is less exact. In Figure 2, we plot the mole fraction in the permeate and feed sides in the membrane module. Similar figures can be easily drawn for the other flow patterns using the graphical capabilities of Mathematica. Figure 2 clearly shows that the oxygen mole fraction in the feed side of the module varies from the inlet value, $x_0=0.209$, to the reject value, $x_{r}=0.1190$.

3. Countercurrent-Flow Case

The flow diagram for the countercurrent-flow pattern is shown in Figure 1. Both streams are in plug flow. The two governing equations have been derived by Oishi, et al.,[4] and Walawender and Stern[5]:

$$\left(\frac{q_o}{p_i p_B}\right) \frac{dx}{dA_m} = \left(\frac{x-y}{y-x_0}\right) \left((1-x)\alpha^* (rx-y) - x(r(1-x) - (1-y))\right)$$

(11)

$$\left(\frac{q_o}{p_i p_B}\right) \frac{dy}{dA_m} = \left(\frac{y-x}{y-x_0}\right) \left((1-y)\alpha^* (rx-y) - y(r(1-x) - (1-y))\right)$$

(12)

where $q_o=(1-\theta)q_t$. The following boundary conditions

$$x|_{A_m=0} = x_0 \quad \text{and} \quad y|_{A_m=0} = y_i,$$

are used where y_i is the solution of the quadratic equation:

$$y_i = \frac{\alpha^* (x_0 - p_i) y_i + p_i}{1 - (1 - x_0) - (1 - y_i)}$$

(13)

We use L'Hopital's rule to compute the derivatives at $A_m=0$ because they become indeterminate when $x=x_0$. This is performed as follows:

$$\left(\frac{dy}{dA_m}\right)|_{A_m=0} = \frac{\left(x_0-y_i\right)\left(\alpha^* - y_i\right)}{\left(x_0-y_i\right)\left(\alpha^* - 1\right)}$$

$$\left(\frac{dx}{dA_m}\right)|_{A_m=0} = \frac{\left(q_o\right)}{p_ip_B} \frac{\left(x_0-y_i\right)\left(\alpha^* - 1\right)\left(2y_i - x_0 - 1\right)}{\left(x_0-y_i\right)\left(\alpha^* - 1\right)\left(2y_i - x_0 - 1\right)}$$

(14)

$$\left(\frac{dx}{dA_m}\right)|_{A_m=0} = \frac{1}{\left(\frac{q_o}{p_ip_B}\right)} \left[\alpha^* (rx_0 - y_i) (x_0 - y_i) \right]$$

(15)

These two differential equations can be solved simultaneously using NDSolve. We enter the equations using an If statement to take into account the derivative expression when $A_m=0$:

$$\text{eq1[a_]} := \text{D}[x[A_], \{A_0, 1\}] \text{=}$$

$$\text{If}[A_0 \text{=} 0, \text{Evaluate}[\text{Evaluate}\left[(p_p P_t)/(q_o, t) \alpha (x_0 p_i/p_t - y_i) (x_0 - y_i) / y_i / . \right.

$$t \text{=} 2.54 10^{-3}. \text{p}_h \text{=} 190 /. \text{p}_t \text{=} 19 /. \alpha \text{=} 10 /.$$

$$P' \text{=} 50 10^{-10}. \text{q}_o \text{=} 8 10^{5} / x_0 \to a], \text{Evaluate}$$

$$\left(\frac{p_p P_t}{q_o, t} \text{D}[x[A_], y[A_]] / \text{D}[y[A_], x_0] \right) \text{=}$$

$$\left(\left(1 - x[A_0] \right) \alpha (p_p/p_t - x[A_0] - y[A_0]) - x[A_0] \left(p_p/p_t - \left(1 - x[A_0] \right) - (1 - y[A_m]) \right) / . \right.$$

$$t \text{=} 2.54 10^{-3}. \text{p}_h \text{=} 190 /. \text{p}_t \text{=} 19 /. \alpha \text{=} 10 /.$$

$$P' \text{=} 50 10^{-10}. \text{q}_o \text{=} 8 10^{5} / x_0 \to a]]$$

Since the value of the reject mole fraction, x_{r}, and the total area, A_m, are unknown, we use FindRoot to solve for these two unknowns so that the mole fraction of oxygen in the feed is 0.209 and that the material balance for component A is verified:

$$x|_{A_m=0} = x_{f0} \text{ and } \theta y_p A_m + (1-\theta) x_0 = x_{AF}$$

Following the treatment of Walawender and Stern[5], we set the area equal to zero at the outlet of the gas separation module. Thus, the sign of the membrane area obtained using this approach is negative and must be reversed. We get the following results: $A_m=2.859 \times 10^{8}$ cm2, $y_p=0.5763$, and $x_0=0.1171$. We find a smaller membrane area and reject mole
fraction and a higher permeate composition.

4. Co-Current-Flow Case

The governing equations\(^{(3)}\) are derived in a similar fashion to the preceding case.

\[
\left(\frac{q_i}{p_i P_B} \right) \frac{dy}{dA_m} = \left(\frac{x - y}{x - x_f} \right) \left[(1 - y) \alpha^*(rx - y) - y(r(1 - x) - (1 - y)) \right]
\]

\[\tag{16}\]

\[
\left(\frac{q_i}{p_i P_B} \right) \frac{dx}{dA_m} = \left(\frac{x - y}{y - x_f} \right) \left[(1 - x) \alpha^*(rx - y) - x(r(1 - x) - (1 - y)) \right]
\]

\[\tag{17}\]

The following boundary conditions must be used: \(x_{A_m} = x_{A_f}\) and \(y_{A_m} = y_f\). The value of \(y_i\) is a solution of the following quadratic equation:

\[
y_i = \frac{\alpha^*[\left(x_f - \left(\frac{p_i}{p_B} \right) y_i \right) - (1 - y_i) \left(x_f - \left(\frac{p_i}{p_B} \right) y_i \right)]}{\left(x_f - \left(\frac{p_i}{p_B} \right) y_i \right) - (1 - y_i) \left(x_f - \left(\frac{p_i}{p_B} \right) y_i \right)}
\]

\[\tag{18}\]

Inspection of Equation (16) shows that the derivatives are indeterminate when \(A_m \to 0\). We use L’Hôpital’s rule to get expressions for the derivatives at \(A_m = 0\) as follows:

\[
\left(\frac{dy}{dA_m} \right)_{A_m = 0} = \left(\frac{q_i}{p_i P_B} \right) \frac{dx}{dA_m} \text{ at } A_m = 0
\]

\[\tag{19}\]

The value of the total membrane area is found using \(\text{FindRoot}\) to satisfy the material balance for oxygen:

\[
\frac{\partial y_i}{\partial x_{A_m}} + (1 - \theta) x_O = x_{A_f}. \quad \text{The membrane area, permeate composition, and reject mole fraction are equal to: } \text{A}_{sol} = 2.955 \times 10^8 \text{ cm}^2, y_i = 0.5584 \text{ and } x_O = 0.1216.
\]

5. Comparing the Different Flow Patterns

The membrane areas are equal within 10%. The smallest membrane area is obtained using the countercurrent flow pattern. The countercurrent case requires a smaller membrane area because the driving force for permeation (the compositional difference between permeate and feed sides) is higher than in the other flow patterns. The complete-mixing model gives the highest membrane area. The reject mole fractions and the permeate compositions obtained for the four cases studied show similar trends. The most efficient flow pattern is the countercurrent mode. In fact, the order of efficiency is the following: countercurrent flow > cross-flow > co-current flow > complete-mixing model. Reducing membrane area has a major impact on capital investment costs. Thus, the countercurrent flow pattern is the optimal design choice. Other relevant parameters for reducing membrane area are thickness and permeability of the membrane and operating pressure, which will affect operating costs as well.

CONCLUSIONS

In this study, we showed how simple Mathematica commands\(^{(2)}\) can be used to solve problems that required tedious iterative techniques or complicated programming skills. We present the solutions of two problems proposed by Professor Geankoplis.\(^{(1)}\) We extend this author’s work to the countercurrent and co-current flow patterns. These problems are given to the junior and senior students of the National Institute of Applied Sciences in Tunis as small research projects. The students excel in these type of problems despite the fact that they do not have prior knowledge of Mathematica.

NOMENCLATURE

\(A_n\) membrane area

\(P_i\) permeability of component i

\(p_f\) feed side pressure

\(P_B\) permeate side pressure

\(q_i\) feed flow rate

\(q_p\) permeate flow rate

\(q_{\text{r}}\) reject flow rate

\(t\) membrane thickness

\(r\) ratio of pressures of feed and permeate sides

\(x_n\) feed mole fraction of component i

\(x_{\text{r}}\) reject mole fraction

\(y_i\) permeate mole fraction

\(\alpha^*\) separation factor

\(\theta\) stage cut

REFERENCES