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Finite Element Modeling of Thermopiezomagnetic
Smart Structures

M. Sunar,¤ Ahmed Z. Al-Garni,† M. H. Ali,‡ and R. Kahraman§

King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Linear constitutive equationsof a thermopiezomagneticmedium involvingmechanical, electrical, magnetic, and
thermal � elds are presented with the aid of a thermodynamic potential. A thermopiezomagnetic medium can be
formed by bonding together a piezoelectric and magnetostrictive composite. Two energy functionals are de� ned.
It is shown via Hamilton’s principle that these functionals yield the equations of motion for the mechanical � eld,
Maxwell’s equilibrium equations for the electrical and magnetic � elds, and the generalized heat equation for
the thermal � eld. Finite element equations for the thermopiezomagnetic media are obtained by using the linear
constitutive equations in Hamilton’s principle together with the � nite element approximations.The � nite element
equations are utilized on an example two-layer smart structure, which consists of a piezoceramic (barium titanate)
layer at the bottom and a magnetoceramic (cobalt ferrite) layer at the top. An electrostatic � eld applied to the
piezoceramic layer causes strain in the structure. This strain then produces magnetic � eld in the magnetoceramic
layer.

Nomenclature
A = vector of magnetic potential
B = vector of magnetic � ux density
b = matrix of electromagnetic coef� cients
c = matrix of elastic stiffness coef� cients
D = vector of electrical displacement
E = vector of electrical � eld intensity
e = matrix of piezoelectric coef� cients
G = thermodynamic potential
H = vector of magnetic � eld intensity
h = vector of external (applied) heat � ux
I = area moment of inertia about the neutral axis
J = vector of volume current density
K = matrix of heat conduction coef� cients
` = matrix of piezomagnetic stress coef� cients
n = vector of surface normal
P = vector of pyroelectric coef� cients
Pb = vector of body forces
Pc = vector of concentrated forces
Ps = vector of surface forces
q = vector of heat � ux
r = vector of thermomagnetic coef� cients
S = strain vector
T = stress vector
u = displacement vector
W = heat source density
® = entropy constitutive coef� cient
" = matrix of dielectric coef� cients
´ = entropy density
2 = absolute temperature
20 = reference temperature
µ = small temperature variation
¸ = vector of thermal stress coef� cients
¹ = matrix of permeability coef� cients
½ = mass density

Received 30 September 1999; revision received 17 May 2001; accepted
for publication 17 July 2001. Copyright c° 2002 by the authors. Published
by the American Institute of Aeronautics and Astronautics, Inc., with per-
mission. Copies of this paper may be made for personal or internal use,
on condition that the copier pay the $10.00 per-copy fee to the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include
the code 0001-1452/02 $10.00 in correspondence with the CCC.

¤Associate Professor, Mechanical Engineering Department.
†Professor, Mechanical Engineering Department. Senior Member AIAA.
‡Research Assistant, Mechanical Engineering Department.
§Associate Professor, Chemical Engineering Department.

½v = volume charge density
¾ = surface charge
Á = electrical potential

Introduction

M ECHANICAL, electrical, magnetic, and thermal � elds
coexist in some physical phenomena when the host medium

is suitable. The general problem involving these � elds is a complex
problem caused by many issues that must be addressed for the so-
lution. In most studies the interactionof only two or three � elds are
considered.The constitutiverelationsamong various� elds are often
linearized assuming that the � elds are in quasi-staticequilibriumat
a given instant.

When the magnetic � eld is ignored, the interactions of remain-
ing � elds lead to the phenomenonof thermopiezoelectricity. If only
mechanical and electrical � elds are considered,the governingequa-
tions reduce to those of piezoelectricity. The piezoelectricity was
discovered by the Curie brothers in 1880.1 The piezoelectric trans-
ducers have been used in numerous applications over a century.
Although the piezoelectricity has a long history, its application to
system control has happened only in recent years, practically in
the late 1980s and in the 1990s. The past decade has witnessed a
remarkable increase in the research of piezoelectricity pertaining
to activities in system sensing and control,2;3 The recent review
papers by Crawley,4 Newnham,5 and Sunar and Rao6 report the in-
creasing trend of research in piezoelectrical sensing and actuation.
Piezoelectricpolymerpolyvinylidene� uoride (PVDF) and piezoce-
ramics such as barium titanate (BaTiO3) and lead zirconate titanate
(PZT) are some piezoelectricmaterials used in various applications.

The governing equations of thermopiezoelectricity were � rst de-
rived by Mindlin.7 A system of two-dimensional equations for
high-frequency motions of thermopiezoelectric crystal plates was
obtained by Mindlin.8 Some general theorems of thermopiezoelec-
tricity were given by Nowacki.9 The application of thermopiezo-
electricity to the control of adaptive structures has been carried out
in recent years. Analysis of distributed thermopiezoelectricsensors
and actuators for intelligent structures was performed by Rao and
Sunar.10 The quasi-static equations of thermopiezoelectricity were
used to develop a � nite element formulation for thermopiezoelec-
tric media. The formulation was utilized in studying thermal effects
in intelligent structures for vibration control. Thermopiezoelectric
actuator placementproblem for cantilever-beamlike structureswas
considered by Sunar and Rao.11 The precision control by piezo-
electric systems operation under thermal in� uences was presented
by Tzou and Ye.12 Distributed control of piezoelectric laminates
subjected to a steady-state temperature � eld was investigated. The
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thermopiezoelectric behavior of laminated plates was studied by
Tauchert.13

In general, the phenomenonof magnetostriction is de� ned as the
relationbetweenmechanicalandmagnetic� elds in a body.This phe-
nomenonwas discoveredby Joule in 1842.14 Some magnetostrictive
ceramics can be listed as cobalt ferrite (CoFe2O4 ), Ni, Alfenol, and
Terfenol-D.Thin � lms with highmagnetostrictionareveryattractive
for active mechanical actuators. The modeling of magnetostrictive
thin � lms and application to a micromembrane was presented by
Body et al.14

The piezoelectric and magnetostrictive layers can be bonded to-
gether to form composites that exhibit magnetoelectriceffect. As a
result of this effect, an electrical signal is obtained from the piezo-
electric layer as a result of the application of a magnetic � eld to
the magnetostrictive layer. Conversely, the magnetostrictive layer
can be magnetized because of the application of an electrical � eld
to the piezoelectric layer. These composites can be used as sen-
sors and actuators for system control. A magnetoelectriccoef� cient
was de� ned for these composites by Harshe et al.15 as the coef� -
cient relating the electrical � eld to the magnetic � eld at open circuit
conditions. Various piezoelectric/magnetostrictivecomposite com-
binations were formed by Avellaneda and Harshe16 to calculate the
magnetoelectriccoef� cient and parameters that characterize the ef-
� ciency of energy conversion among the layers. A hybrid device
composedof a magnetostrictive� lm on a piezoelectricsubstratewas
described by Arai et al.17 The changes in the properties of the mag-
netostrictive � lm were observed as a result of electrical � eld appli-
cations on the piezoelectricsubstrate. The performance of a sensor
consisting of a piezoelectric plate and magnetostrictiveamorphous
ribbon was studied by Prieto et al.18 The effect of the anisotropy
induced by the piezoelectric plate on the ribbon’s performance was
investigated.

It appears from the literature survey that numerous papers have
been published in the areas of piezoelectricityand magnetostriction
in recentyears. However, many research studies have been con� ned
to either of these areas. Therefore, there is a need to present the
equations of piezoelectricity and magnetostriction together, which
can coexist in a thermopiezomagneticmedium. This medium can be
formed to make use of both the piezoelectric and magnetostrictive
effects for sensing and actuation.

In this paper the constitutive equations are obtained for a ther-
mopiezomagneticmedium where mechanical, electrical,magnetic,
and thermal � elds interact with each other. These relations are gen-
eral equations that can be used to describe the phenomena of lin-
ear thermopiezoelectricity, piezoelectricity, and magnetostriction,
and their interactions. The constitutive equations are utilized in
Hamilton’s principle with the aid of two energy functionals. It is
shown that the Hamilton’s principle yields the equations of motion,
Maxwell’s equilibriumequations and the generalizedheat equation
for the mechanical, electrical and magnetic, and thermal � elds, re-
spectively. The � nite element method is then applied to obtain the
approximate linear equations that can be used to study the dynamic
behavior of a thermopiezomagnetic medium in a comprehensive
manner. A numerical example is given to illustrate the interaction
of piezoelectricity and magnetostriction on a composite composed
of BaTiO3 and CoFe2O4 layers.

Constitutive Equations of Thermopiezomagnetism
A thermodynamic potential G is de� ned such that

G D G.S; E; B; µ/ (1)

The total differential of G is
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where the bold partial derivatives indicate the derivatives with re-
spect to appropriatecomponentsof thecorrespondingvectorand the

subscriptsare omitted for brevity.This scheme is followed through-
out the paper. The partial derivatives in Eq. (2) are
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It is shown in the next section that the de� nition of these partial
derivatives as in Eq. (3) results in the equations of motion for the
mechanical� eld, Maxwell’s equilibriumequationsfor the electrical
and magnetic � elds, and generalized heat equation for the thermal
� eld. The total differentialsof T; D; H, and ´ are as follows:
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where the partial derivativesare de� ned as
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The negativesignsare fromthenegativestressesthatmust be applied
in order to keep the material in the constant strain state.19 In view
of Eqs. (3–5),
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Other partial derivatives in Eq. (4) are de� ned as

@D
@E

D ";
@D
@B

D b;
@D
@µ

D P

@H
@B

D ¹¡1;
@´

@B
D r;

@´

@µ
D ® (7)

In Eq. (7) ® is given as ® D ½cv 2¡1
0 , where cv is speci� c heat. From

Eqs. (3), (4), and (7)
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When Eqs. (5–8) are used in Eq. (4) under the assumption that
in the natural state both the independent and dependent variables
vanish, the following constitutive equations are obtained for a ther-
mopiezomagneticmedium:
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It is easy to prove that the thermodynamic potential G takes the
following form:

G D 1
2 ST cS ¡ 1

2 ET "E C 1
2 BT ¹¡1B ¡ 1

2 ®µ 2 ¡ ST eE

¡ ET Pµ ¡ ST ¸µ ¡ ST `B ¡ BT rµ ¡ BT bE (10)

Differential Equations of Thermopiezomagnetism
Two energy functionals 5 and 9 are de� ned as follows
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where 2 is given as 2 D 20 C µ and H 0
E is the matrix of external

magnetic � eld intensity de� ned in Cartesian coordinate system as
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0 in Eq. (11) is given as
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2
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where r is the gradientvector.The generalizedHamilton’s principle
has the following forms:
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Now recall the following relations:
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The equalities for some terms in Eq. (21) can be written as
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where in the Cartesian coordinate system
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with nx , n y , and nz being the Cartesian components of the surface
normal n and H 0 being de� ned as in Eq. (12). Hence the fourth
equality in Eq. (22) becomes
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Equation (21) is now transformed to
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Therefore, the following equations must be satis� ed with appropri-
ate boundary conditions on the correspondingsurfaces:

¡½ Ru C LT
u T C Pb D 0; rT D ¡ ½v D 0

PD ¡ r £ H C J D 0 (26)

The � rst equation in Eq. (26) is the equation of motion for the me-
chanical � eld, and the second and third equationsare the Maxwell’s
equilibrium equations for the electrical and magnetic � elds.20
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It can be shown9 that the Hamilton’s principle on 9 given in
Eq. (15) yields
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Hence the principle yields the generalized heat equation given as

rT q ¡ W C 2 Ṕ D 0 (28)

with the boundary condition on the surface being q D h.

Finite Element Equations
for a Thermopiezomagnetic Medium

The variables of the � nite element formulation are chosen as u,
Á, A, and µ for the mechanical, electrical, magnetic, and thermal
� elds, respectively. The following approximations are written for
each � nite element:

ue D Nuui ; Áe D NÁÁi ; Ae D NAAi ; µe D Nµ µi

(29)

where the subscripts e and i respectively stand for the element and
nodes of the element and N are the shape function matrices whose
subscripts denote the associated � elds. The following relations are
also written:
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SubstitutingEqs. (9), (29), and (30) in Eqs. (15) and (21) resultsin
the following coupled � nite element equations (after assemblage):
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In Eq. (31), KÁu D K T
uÁ , K Au D K T

u A , K AÁ D K T
Á A , C Au D C T

u A , and
CAÁ D C T

Á A . The elemental applied mechanical force, electrical
charge, magnetic current, and heat vectors (F; G; M, and Q) in
Eq. (31) are given as
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where for Fe the concentratedforce Pce is also added. Equation (31)
can be written in collective form as
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Equation (31) or (34) can be used to investigate the dynamical be-
havior of a thermopiezomagnetic material where the mechanical,
electrical, magnetic, and thermal � elds are coupled through vari-
ables of u; Á; A, and µ .

Numerical Example
A composite beam shown in Fig. 1 is taken as an example to

illustrate the use of thermopizeomagnetic equations given in pre-
ceding sections. The beam is composed of two bonded layers. The
top layer is made up of a magnetostrictive ceramic, CoFe2O4, and
the bottom layer is a piezoelectricceramic, BaTiO3. Material prop-
ertiesof these materials are assumed as in Table 1 (Refs. 15 and 16).
The dimensionsof the beam are taken as follows: length L D 0:1 m,
height h D 0:001 m, and width b D 0:005 m.

As shown in Fig. 1, an electrical � eld is generated in the piezo-
electric layer by applying an electrical voltage ¡V to its bottom
surface. The magnitude of V is taken as unity (1 V).

Fig. 1 Thermopiezomagnetic beam.
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Table 1 Properties of materials

Property Value

Piezoceramic (BaTiO3)
c11, Pa 1:3793£ 1011

e31, C/m2 10.76
"11; "33 , F/m 1:19 £ 10¡8

Magnetoceramic (CoFe2O4 )
c11, Pa 1:5432£ 1011

`31 , N/Wb or A/m 2:86 £ 108

¹11; ¹33, H/m 6¼ £ 10¡8

Analytical Method
A normal stress in the x or 1 direction is induced in the beam

as a result of the applied voltage. This normal stress is because an
equivalent force of magnitude

f D e31 E3bh=2 D e31V b (35)

is generated in the x direction as shown in Fig. 1. In Eq. (35) a
uniform electrical � eld of E3 D 2V=h is assumed across the piezo-
ceramic layer. This force generatesa bendingmoment at the neutral
axis of the composite beam whose location is calculated using the
transformed-sectionmethod.21 Here, the composite beam is trans-
formed to a beam made up of the magnetostrictive material. The
bending moment m caused by f is found as

m D f . Ny ¡ h=4/ (36)

where Ny is the distance of the neutral axis from the beam’s bottom
surface. This moment brings about the vertical displacement u3 in
the beam given as

u3 D .m=2Ym I /x2 (37)

where Ym is the Young’s modulus for the magnetostrictivematerial.
Normal stresses Tb and Tt at the bottom and top surfaces of the

magnetostrictive layer of the beam are easily computed as

Tb D .m=I /yb C f=A; Tt D ¡.m=I /yt C f=A (38)

where yb and yt indicate the distancesof the bottomand top surfaces
of themagnetostrictivelayer from the neutralaxis and A is thecross-
sectional area of the transformed section.

After � nding the normal stresses, the strains S11 are calculated
using the Hooke’s law. The vertical componentof the magnetic � eld
H3 in the magnetoceramic layer is then found by the constitutive
relation

H3 D ¡`31S11 (39)

Finite Element Method
For the � nite element modeling and analysis each layer of the

composite beam is divided into � ve equal elements, totaling 10 el-
ements for the whole beam (Fig. 2). The displacement u of the
beam can be found from the static � nite element equations of the
piezoelectric layer given as

Kuuu C KuÁÁ D 0; KÁuu ¡ KÁÁÁ D G (40)

Once the displacement u of the whole beam through the � nite ele-
ment method is found, the strain Se for each element can be com-
puted using

Se D Buui (41)

which is also indicated by Eq. (30). Then H3 for each element of
the magnetoceramic layer can be computed via Eq. (39). Or, alter-
natively, the magnetic potential A for the the magnetoceramic layer
can be found from Eq. (31) as

A D K ¡1
AA K Au u (42)

Table 2 Magnetic � eld H3 in A/m
for magnetostrictive layer

Analytical Finite element
Surface method method

Top 11.44 11.42
Bottom ¡21.99 ¡21.88

Fig. 2 Finite element mesh for thermopiezomagnetic beam.

Fig. 3 Vertical displacement of beam subjected to vertical electrical
� eld.

from which the magnetic � eld H for each element can be calculated
as

He D ¹¡1
e BAAi (43)

Vertical displacements u3 of the beam computed by the analyt-
ical and � nite element methods at different locations x are plotted
in Fig. 3. This � gure illustrates the close agreement between the
analytical and � nite element results for u3 .

Magnetic � elds in the y direction H3 for the bottom and top sur-
faces of the magnetoceramic layer are calculated using the analyti-
cal and � nite element methods. The results are tabulated in Table 2.
There is a good match between the two methods.

Conclusions
The constitutive equations of thermopiezomagnetism are ob-

tained through a thermodynamic potential. These expressions are
the linear relations for a thermopiezomagneticmedium where me-
chanical, electrical, magnetic, and thermal � elds interact with each
other. Two energy functionals are used in Hamilton’s principle,and
the � nite elementmethod is employedto obtain � nite element equa-
tions describing the dynamic behavior of the thermopiezomagnetic
medium.

A thermopiezomagnetic composite beam is formed by bonding
together layers of piezoelectric and magnetostrictiveceramics. The
piezoelectric layer is subjected to an electrical � eld, which causes
normal strains in the beam. The strains in the magnetostrictivelayer
then lead to the generation of magnetic � eld. Analytical and � nite
element solutions are found for the vertical components of the dis-
placement u3 and magnetic � eld H3 . The results indicate a close
agreement between analytical and � nite element solutions.

This paper presents a variational approach of obtaining gen-
eral coupled-� eld equations for thermopiezomagnetic composites.
These composites can be used as sensors and actuators that are
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essential elements for smart/intelligent structures such as those
found in aerospace applications. Hence, the thermopiezomagnetic
equations derived here are expected to be important in describing
their behavior.
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