SE301: Numerical Methods
Topic 2:
Solution of Nonlinear Equations

Lectures 5-11:
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Dr. Samir Al-Amer

(Term 063)

Read Chapters 5 and 6 of the textbook
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Lecture 5

Solution of Nonlinear Equations

(Root finding Problems )

® Definitions

® Classification of methods
- Analytical solutions
- Graphical methods
-~ Numerical methods

-~ Bracketing methods
-~ Open methods

® Convergence Notations

Reading Assignment: Sections 5.1 and 5.2
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Root finding Problems

Many problems in Science and Engineering are
expressed as

a continuous function f(x),

ne value r suchthat f(r)=0

These problems are called root finding problems
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Roots of Equations

A number r that satisfies an equation is called a
root of the equation.

Theequation x*—3x°—-7x"+15x =-18
has four roots —2, 3, 3 and -1

Theequation has two simple roots (—1and — 2)
and a repeated root (3) with multiplicity = 2
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/.eros of a function

Let f(x) be a real-valued function of a real variable.
Any number r for which f(r)=0 is called a zero
of the function.

Examples:
2 and 3 are zeros of the function f(x) = (x-2)(x-3)
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Graphical Interpretation ot zeros

= The real zeros of a
function f(x) are the
values of x at which f(x)
the graph of the
function crosses (or

touches ) the x-axis. I I I

Real zeros of f(x)
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Multiple zeros

“ f(x) = (x-1
\
N

==

f(x)=(x-1) =x*-2x+1
has double zeros (zero with muliplicity =2) at x =1
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Multiple Zeros

f(x)=x’

f(x)=x°
has a zero with muliplicity=3 at x =0
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Simple Zeros

f(x)=(x+1)(x-2)

\ ]

\

f(X)=(x+1)(x=2)=x*—-x—-2
has two simple zeros (oneat x =2and one at x =—1)
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Facts

= Any nt" order polynomial has exactly n
zeros (counting real and complex zeros
with their multiplicities).

= Any polynomial with an odd order has at
least one real zero.

multiplicity m then the function and its
first (m-1) derivatives are zero at X=r
and the mt derivative at r is not zero.
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Roots of Equations & Zeros ot function

Given theequation
x* —3x®—7x*+15x =18
Move all terms to one side of the equation
x* —3x®—7x*+15x+18=0
Define f (x) as
f(x)=x*—-3x>-7x*+15x+18
The zeros of f(x) are the same as the rootsof the equation
(Which are -2, 3, 3 and -1)
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Solution Methods

Several ways to solve nonlinear equations are
possible.

= Analytical Solutions
® possible for special equations only

® Useful for providing initial guesses for other methods

< Numerical Solutions
® Open methods
® Bracketing methods
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Solution Methods:
Analytical Solutions

Analytical Solutions are available for special
equations only.

Analyticalsolutionof ax’+bx+c=0

_b++/b? —4ac
2a

roots =

No analyticalsolution is availablefor x—e™ =0
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Graphical Methods

= Graphical methods are useful to provide an
Initial guess to be used by other methods

Solve

X=e"

The root €[0,1]
root ~ 0.6 | |
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Bracketing Methods

= In bracketing methods, the method starts
with an interval that contains the root and

a procedure Is used to obtain a smaller
Interval containing the root.

= Examples of bracketing methods :
® Bisection method

® False position method
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Open Methods

= In the open methods, the method starts
with one or more Initial guess points. In
each iteration a new guess of the root Is
obtained.

= Open methods are usually more efficient
than bracketing methods
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Solution Methods

Many methods are available to solve nonlinear
equations

¢ Bisection Method
o Newton’s Method |___ | These will be

¢ Secant Method covered in SE301
@ False position Method

® Muller’s Method

® Bairstow’s Method

® Fixed point iterations
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Convergence Notation

Asequence X, X,,..., X ,... ISsaldtoconvergeto x if
to every £ >0 there exist N such that

X,—x|<& Vn>N
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Convergence Notation

Let x,X,,...., convergesto X
- ‘Xn+1 o X‘
Linear Convergence <C
%, —X
- ‘Xn+1 o X‘
Quadratic Convergence +<C
% —X
Xn+1 - X‘

Convergence of order p <C

X, —X|"
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Speed of convergence

= We can compare different methods In
terms of their convergence rate.

= Quadratic convergence Is faster than
linear convergence.

converges faster than a method with
convergence order p if g>p.

= A Method of convergence order p>1 are
said to have super linear convergence.
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ILectures 6-7
Bisection Method

® The Bisection Algorithm
® Convergence Analysis of Bisection Method
® Examples

Reading Assignment: Sections 5.1 and 5.2
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Introduction:

= The Bisection method is one of the simplest
methods to find a zero of a nonlinear function.

= It is also called interval halving method.

= To use the Bisection method, one needs an initial
Interval that iIs known to contain a zero of the
function.

= The method systematically reduces the interval.
It does this by dividing the interval into two equal
parts, performs a simple test and based on the
result of the test half of the interval is thrown
away.

= The procedure is repeated until the desired
Interval size is obtained.
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Intermediate Value Theorem

= Let f(x) be defined on the
Interval [a,b],

1 f(a)
z Intermediate value theorem: |
If a function Is continuous

and f(a) and f(b) have a
different signs then the

function has at least one
zero Iin the interval [a,b]
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Examples

= If f(a) and f(b) have the R
same sign, the function
may have an even
number of real zeros or
no real zero In the
Interval [ a,b]

= Bisection method can The function has four real zeros
not be used in these
cases 4

a b

The function has no real zeros
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Two more Examples

= If f(a) and f(b) have
different signs, the
function has at least

»
|

3 \b’

one real zero
= Bisection method The function has one real zero
can be used to find t
one of the zeros.
é 5 b

The function has three real zeros
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f(a) and f(b) have different signs,
Bisection Method obtains a new interval
that 1s half of the current interval and the
signh of the function at the end points of
the interval are different.

= This allows us to repeat the Bisection
procedure to further reduce the size of the
Interval.
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Bisection Algorithm
Assumptions:

= f(x) is continuous on [a,b]
t f(a)

= f(a) f(b) <O

Algorithm: :

Loop ; C b
1. Compute the mid point c=(a+b)/2 i .
2. Evaluate f(c) a
3. 1If f(a) f(c) <0 then new interval [a, c] !

f(b)

If f(a) f( c) = 0 then new interval [c, b]

End loop

Yv
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Bisection Method

Assumptions:

Given an interval [a,b]

f(x) Is continuous on [a,b]

f(a) and f(b) have opposite signs.

These assumptions ensures the existence of at
least one zero in the interval [a,b] and the
bisection method can be used to obtain a smaller
Interval that contains the zero.
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Bisection Method

\/\\ y

do I
a1 82 \L
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Example
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Flow chart of Bisection Method

—

u=f(a);v="fb)

c = (a+b) /2 ; w=1(c)

yes

-
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Example

Can you use Bisection method to finda zeroof
f(x)=x°>-3x+1 intheinterval[0,2]?

ANswer:

f (x) I1s continuous on [0,2]
f(0)*f(2)=(1)(3)=3>0
Assumptions are not satisfied
Bisection method can not be used
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Example:

Can youuse Bisection method to finda zeroof
f (x) =x*-3x+1 intheinterval[0,1]?

ANswer:
f (x) 1s continuous on [0,1]
f(0)*f(1)=(1)(-1)=-1<0
Assumptions are satisfied
Bisection method can be used
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Best Estimate and error level

Bisection method obtains an interval that
IS guaranteed to contain a zero of the
function

Questions:

= What is the error level in the obtained estimate?
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Best Estimate and error level

The best estimate of the zero of the
function is the mid point of the last
Interval generated by the Bisection
method.

. +
Estimate of the zero r = 0+

b—a
2

Error <
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Stopping Criteria

Two common stopping criteria

1. Stop after a fixed number of iterations

2. Stop when the absolute error is less than
a specified value

How these criteria are related?
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Stopping Criteria

C IS the midpoint of the Interval at the n th Iteration

n

( ¢, Isusually used as the estimate of the root).
r IS the zero of the function

After n iterations
b—a

error |=|r-c, | < e
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Convergence Analysis

Given f(x),a, band ¢
How many iterationsare neededsuch that \ X-r \ <ég

where r Is the zeroof f(x)and x is the
bisectionestimate (i.e. X=c¢,)
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Convergence Analysis
Alternative form

Given f(x),a, band ¢

How many iterationsare neededsuch that \ X-r \ <ég

where r Is the zeroof f(x)and x is the
bisectionestimate (i.e. X=c¢,)
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Example

a=6, b=7, £=0.0005
How many iterations are needed such that | x-r|< ¢

s log(b—-a)—-log(2¢) log(l) —1og(0.001)
) log2  log(2)

=9.9658

— n=>10
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Example

= Use Bisection method to find a root of the
equation x = cos (x) with absolute error <0.02

(assume the initial interval [0.5,0.9])

Question 1: What is f (x) ?

Question 2: Are the assumptions satisfied ?
Question 3: How many iterations are needed ?
Question 4: How to compute the new estimate ?
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Bisection Method

Initial Interval

f(a)=-0.3776 f(b) =0.2784
O ——
a=05 c=0.7 b= 0.9
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-0.3776 -0.06438 0.2784

*

0.5 0.7 0.9

-0.06438 0.1033 0.2784

—— —
0.7 0.8 0.9
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-0.0648 0.0183 0.1033 Error < 0.025

—— —— —————————————————————
0.7 0.75 0.8
-0.06438 -0.0235 0.0183

o Error < .0125

0.70 0.725 0.75
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Summary

= Initial interval containing the root
[0.5,0.9]

= After 4 iterations
® Interval containing the root [0.725 ,0.75]
® Best estimate of the rootis 0.7375
®| Error | < 0.0125
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Programming Bisection Method

— - — - C =
a=.5; b=.9; 0.7000
u=a-cos(a); fo =
v= b-cos(b); i
for i=1:5 c =O'0648
c=(a+b)/2 0.8000
fc=c-cos(c) fo _
if u*fc<O 6 1033
b=c ; v=fc; c= '
else 0.7500
a=c; u=fc; P
end 0.0183
end c =
0.7250
fc =

-0.0235
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Example

Find the root of

f(x)=x>-3x+1 intheinterval[0,1]

* f(x)Is continuous
* f(0)=1 f()=-1= f(a) f(b)<O
* Bisection method can be used to find the root




Example

Iteration | a b c= (a+b) |[f(c) b-a
2 2
O 0] 1 0.5 -0.375 |0.5
1 O 0.5 0.25 0.266 0.25
2 0.25 0.5 375 -7.23E-3|0.125
3 0.25 0.375 |0.3125 9.30E-2 | 0.0625
4 0.3125 |0.375 |0.34375 |9.37E-3 [0.03125
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Bisection Method

Advantages
= Simple and easy to implement
= One function evaluation per iteration

= The size of the interval containing the zero is reduced
by 50% after each iteration

= The number of iterations can be determined a priori
= No knowledge of the derivative is needed
= The function does not have to be differentiable

Disadvantage
= Slow to converge
= Good intermediate approximations may be discarded
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Lecture 8-9

Newton-Raphson Method

® Assumptions

® Interpretation

® Examples

® Convergence Analysis
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Newton-Raphson Method

(also known as Newton’s Method)

Given an initial guess of the root X ,
Newton-Raphson method uses
Information about the function and its
derivative at that point to find a better
guess of the root.

Assumptions:
®f (X) Is continuous and first derivative Is
known
® An initial guess X, such that f '(x;) #0 Is given
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Newton’s Method

Given f(x), f'(x), X, C FORTRAN PROGRAM
Assumpution f'( x,) =0 F(X)=X**3-3*X**2+1
FP(X)=3*X **2_6* X
for 1=0:n 20241(” e
X, =X — fl(xi) X =X —F(X)/FP(X)
F(x) PRINT *, X
end 10 CONTINUE
STOP
END
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Newton’s Method

Given f(x), f'(x), X, Fm
Assumpution f'( x,)=0

for i=0:n FP.m
Xi+1_ i f(Xi)
f'(x)
end
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Derivation of Newton’s Method

Given: X, an initial guess of the root of f(x)=0
Question : How do we obtain a better estimate?

Taylor Therorem: f(x+h)= f(x)+ f'(x)h
Find h such that f(x+h)=0.

f(x)
()

a new guess of theroot X, = X, —

= h =

T (%)
(%)
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Example

Find a zero of the function f(x) = x> —2x*+x—3 ,xq = 4
f'(x) =3x% —4x+1
T(x) _, 33 _,

Iteration1: X, =Xg— — =4
f'(xg) 33
lteration 2: X, = X; — f'(xl) _3-2 _ 24375
f'(x) 16
f(x2) ~ 2.0369

Iteration 3:

=2.4375 =2.2130
9.0742
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Example

Iteration X f(x) (X Xis1 X1 =X
0] 4 33 33 3 1

1 3 9 16 2.4375 0.5625
2 2.4375 2.0369 9.0742 2.2130 0.2245

3 2.2130 0.2564 6.8404 2.1756 0.0384
4 2.1756 0.0065 6.4969 2.1746 0.0010
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Convergence Analysis

Theorem :
Let f(x), f'(x)and f''(x) becontinuousatx ~r
where f(r)=0. If f'(r)= 0 then there exist 6 >0

‘Xk+1-r‘

such that [x,-r| <& = o <C
X, T
el
c ==
2 min |[f'(x)

|Xo-r|<8
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Convergence Analysis

Remarks

When the guess is close enough to a simple
root of the function then Newton’s method is
guaranteed to converge quadratically.

Quadratic convergence means that the number
of correct digits is nearly doubled at each
iteration.
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Problems with Newton’s Method

* |If the initial guess of the root is far from
the root the method may not converge.

* Newton’s method converges linearly near
multiple zeros {f(r) =f’(r) =0 }. In such a
case modified algorithms can be used to

regain the quadratic convergence.

SE301_Topic 2 (c)AL-AMER2006




Multiple Roots

f(x)=x°

f(x) has has three
zerosatx =0
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P f(x)=(x+1)

/

f(x) has has two
Zerosat x =-1
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Problems with Newton’s Method

Runaway

The estimates of the root is going away from the root.
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Problems with Newton’s Method
Flat Spot

/

The value of f'(x) is zero, the algorithm fails.

If f '(x) is very small then x, will be very far from x.
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Problems with Newton’s Method
Cycle

The algorithm cycles between two values x; and X
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Newton’s Method for Systems of
nonlinear Equations

Given: X, an initial guess of the root of F(x) =0
Newton's Iteration

K = Xy _[Fl(xk)]_lF(Xk)

of, of,

| fl(xl’ Xz’---)_ 2?1 g}(z
F(X)=| f.(x.,x,,...)|, F'(X)=| =2 2
(X) 2(1:2 ) (X) x ox,
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Example

= Solve the following system of equations

y+x2—0.5—x:0
G —-o9xy—-y=0
Initial guess x=1, y=0

VX2 _05-—x| 2x—1 1
c_ y+2x 05 x’ = X,
- X" =5Xy-y | 2X—3y —5x-1

|

|
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Solution Using Newton’s Method

Iteration1:

F:{y+x2—05—x}:{—05}: |:,:{Zx—l 1 }:{
X* —5xy —y 1 | 2x—-5y —5x-1

« :H_F 1 T {—05}{1.25}

1ol |2 -6 1 0.25

Iteration 2:

F:[o.oeszs}:’ F,:F.s 1 }
-0.25 1.25 -7.25

« {1.25}{1.5 1 T {0.0625}_{1.2332}

> 10.25| [1.25 -7.25 -0.25 | |0.2126
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Example

Try this

= Solve the following system of equations

y+x2 -1-x=0
x2—2y2—y:0
Initialguess x=0, y=0

vax2_1—x 2x-1 1
i A R o
X" -2y -y 2X  —4y-1

|

0
0

|
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Example

Solution

Iteration 0 1 2 3 4 5

" 0 -1 -0.6 —0.5287 —0.5257 —0.5257
“ 0 0 0.2 0.1969 0.1980 0.1980
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Lectures 10

Secant Method

= Secant Method
= Examples
= Convergence Analysis
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Newton’s Method Review)

Assumptions: f(x), f'(x), xo are available,
f'(xg) =0
Newton's Method newestimate
()

i =X~ (%)
I

Problem:
f'(x;)1s not available

or difficult to obtain analytically
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Secant Method

f(x+h)— f(x)

f'(x) ~ .
If x. and x._, are two initial points
ey ()~ T(X,)
)= (X —Xi4)
v f (Xi) _ B (X — X —1)
Xi+1 o Xi f(Xi)_ f(Xi—l) o Xi ( ) f(X) f(XI 1)
(Xi - Xi—l)
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Secant Method

Assumptions :

Two Initial points x; and Xx;_4
such that f(x:) = f(X_4)

New estimate (Secant Method):

(X —Xj_1)

Xiv1 = Xi_f(xi) f( )_f(X| 1)
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Secant Method

f(x)=x"-2x+0.5
X, =0
X, =1

Xiq = X — T(X) = %)

T(x)—T(x,)
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Secant Method

<xo,x1,i=1>
:

X = % — T(x)

(Xi B Xi—1)

F(x)— f(%y)
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Modified Secant Method

In this modified Secant method only one initial guess is needed
(X +i)— T(x)

F(x)~ S
v f(x) — oy — PO
Xis1 =X f(x+6)—f(x) " F (X +07)— 1(x)
O

Problem: How to select o; ?
If not selected properly, the method may diverge
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Example

find the roots of
f(X)=x"+x>+3
Initial points
X,=—land x, =-1.1

with error < 0.001
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Example

x(1) f( x(1) ) X(1+1) | x(i+1)-x(1)]
-1.0000 1.0000
-1.1000 0.0585 -1.1062 0. 0062
-1.1062 0.0102 -1.1052 0.0009
-1.1052 0.0001 -1.1052 0.0000
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Convergence Analysis

= The rate of convergence of the Secant method
IS super linear

Xiﬂ_r‘ <C a~1.62

(04
X;i—T

& It Is better than Bisection method but not as
good as Newton’s method

r:root X :estimateof therootat thei™ iteratior
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Lectures 11

Comparison of Root finding

methods

= Advantages/disadvantages
= Examples
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Summary

Bisection

Reliable, Slow

One function evaluation per iteration

Needs an interval [a,b] containing the root, f(a) f(b)<O
No knowledge of derivative is needed

Newton

Fast (if near the root) but may diverge
Two function evaluation per iteration

Needs derivative and an initial guess xo, f’ (Xo) is
nonzero

Secant

Fast (slower than Newton) but may diverge
one function evaluation per iteration

Needs two initial points guess xo, X1 such that
f (xXo0)- f (X1) is nonzero.

No knowledge of derivative is needed
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Example

Use Secant method to find the root of
f(x)=x"-x-1
Two Initial points x, =1 and x, =1.5

(X o X_1)

f(X)—f(X. 1)
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Solution

k Xy f(x,)
O 1.0000 -1.0000
1 1.5000 8.8906
2 1.0506 -0.7062
3 1.0836 -0.4645
4 1.1472 0.1321
5 1.1331 -0.0165
6 1.1347 -0.0005
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Example

Use Newton's Method to find a root of
f(X) = x> —x—1

Use the initial points xy =1

Stop after three iterations or

1 ‘Xkﬂ—xk <0.001 or
if | (x,)| <0.000L
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Five iterations of the solution

k Xy f(x,) f(x,) ERROR
O 1.0000 -1.0000 2.0000

1 1.5000 0.8750 5.7500 0.1522
2 1.3478 0.1007 4.4499 0.0226
3 1.3252 0.0021 4.2685 0.0005
4 1.3247 0.0000 4.2646 0.0000
5 1.3247 0.0000 4.2646 0.0000
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Example

Use Newton's Method to find a root of
f(x)=e* —X

Use the initial points xy =1

Stop after three iterations or

1 ‘Xkﬂ—xk <0.001 or
if | (x,)| <0.0001
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Example

Use Newton's Method to find a root of

f(x)=e"-x, f'(x)=—""-1

. (%)
X FOxe) T (x) (%)

1.0000 -0.6321 -1.3679 0.4621

0.5379 0.0461 -1.5840 -0.0291

0.5670 0.0002 -1.5672 -0.0002

0.5671 0.0000 -1.5671 -0.0000
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Example

Estimates of the root of Xx-cos(x)=0

0.60000000000000 Initial guess
0.74401731944598 1 correct digit
0.73909047688624 4 correct digits
0.73908513322147 10 correct digits

0.73908513321516 14 correct digits
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Example

In estimating the root of Xx-cos(x)=0
To get more than 13 correct digits
= 4 iterations of Newton (x,=0.6)

= 43 Iterations of Bisection method (initial
Interval [0.6, .8]

= 5 Iterations of Secant method
( Xo=0.6, x;,=0.8)
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Homework Assignment

= Check the webCT for the HW and due date
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