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Abstract

In this paper we consider identification of a special class of non-
linear systems using Hammerstein models. Hammerstein Models are
special in the sense that they can be transformed into linear models
and linear systems techniques may be applicable. An iterative iden-
tification algorithm is proposed to obtain a model that minimizes the

infinity norm of the mismatch error. Illustrative examples are given.

1 Introduction

Linear models are often used to model real systems. They are easy to work
with and the theory is well developed. In many cases, however, linear models
are not adequate to represent the physical system and nonlinear models
are needed. General nonlinear models may require considerable amount of
computation to identify and to analyze. Hammerstein models have been

successively used in modeling some physical systems [1]. The Hammerstein
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Figure 1: Hammerstein Model

model consists of a memoryless nonlinear subsystem N(.) followed by a
linear shift invariant subsystem G(z) as shown in Figure 1. The intermediate
variable u(k) is not measurable.

Several algorithms to identify Hammerstein models have been proposed
They can be classified into two groups [2, 3]. In the first class iterative
identification of the linear and nonlinear parts is done [4, 5]. A major prob-
lem in these algorithms is assuring the convergence of the iterations[6]. The
second group includes noniterative algorithms that simultaneously identify
N(.) and G(.) [7]. In general, these are expected to lead to more accurate
models but they have a larger number of parameters to be estimated.

The least squares and mean square error techniques are often used to
obtain the models. An algorithm to minimize the £, gain is presented in
8]

In this paper we propose an identification algorithm to obtain a Hammer-
stein model that minimizes the infinity norm of the mismatch error. The
rest of the paper is organized as follows: Section 2 presents the problem
statement and the notation used. The identification algorithm is given in

Section 3 and numerical examples are given in Section 4.

2 Problem Statement

Given a set of input-output data {z(k),y(k)} and two integers m and n,
it is required to fit the data to a Hammerstein model. The system to be

identified is a nonlinear single-input-single-output system. The nonlinear



block is assumed to be of the form

u(k) = v «'(k) ey
=1

and the linear block is assumed to be a stable shift invariant system described

by

n b
k)= —==0727
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The sensor noise e(k) is assumed to bounded. Let the model parameters be

u(k) + e(k). (2)

denoted by
Oy, = [v1v2 - V)
0o = [a1 a2 - ap]
6y = [bo by -+~ b]"

Note that the parameters of the model can not be uniquely determined and

the following constraint is introduced.
v = 1.

The other coeflicients are normalized accordingly. By defining the following

artificial inputs [9]

the Hammerstein model can be viewed as a linear m-input 1-output system
(see Figure 2 for illustration).

Let Z;(z), U(z),Y (2) and E(z) denote the Z-transform of z;(k),u(k),y(k)
and e(k) respectively then

M 2% ivi Zi(z) + E(2) (3)
i=1

In this paper we will present an identification algorithm to obtain v;, a;

and b; so that the Hy, norm of the mismatch error is minimized. More

precisely the following problem is to be solved.



| |
21 (k) I m |
| |
| \ L | e(k)
| |
x(k’l) 2 22(k) I /\ U(k,‘ ?: bzt |
() | v2 2 H’Z?io aiz=t ||
| |
| |
| |
| |
| |
| |
Figure 2: An Alternative Representation of Hammerstein Model
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3 The Proposed Identification Algorithm

In this section we present a procedure to identify a Hammerstein model
from a set of input output data to solve the optimization problem (4). The
proposed algorithm is an extension of the algorithm developed in [10, 11].
The solution to the H,, approximation problem is obtained by solving a
sequence of weighted least squares problems. Each iteration of the algorithm
involves two approximation problems. In the first, 6, is assumed to be
available and a least squares problem is solved for 8, and 6,. In the second
8, is fixed to its latest value and a least squares problem is solved for 6, and
0y. To insure the uniqueness of the parameter set, a scaling is done to force

v1 to be one and the other parameters are adjusted accordingly.



3.1 Implementation

The algorithm uses samples of the of the Z-transform of the input and out-
put on the unit circle. This is obtained by computing the N-point discrete
Fourier transform of y(k) and z;(k). The computed Fourier transforms de-

noted by Y (e/“#) and Z;(e/“*) are basically samples of Y (z) and Z;(z) on

the unit circle at the frequencies wy = %
Define
bo(k) = [Z1(e5), Za(eF), -+, Zim(e?)]
ba(k) = I:Y(erJk)e—jwk’ Y(ejwk)e—jQWk’ e Y(ej‘*’k)e_j”‘*’k]
op(k) = [1, eI .. e_j"‘*’k]
ab(k") = ¢v(k)0v¢b(k)
and i i i ) ] ]
$u(1) $a(1) $u(1)
&, — ¢u(2) 5, — ¢a(2) &, — $(2)
ey | e | | B ]

Each iteration of the propose algorithm involves solving two weighted
least squares approximation problems. In the first problem, 8} is fixed to its
latest computed value and the following least square problem is solved for

6, and 4,.

min

by, 0

(Y(e7%) + ga (k)00 — u(K)0s $o()8) W (™), (5)

In the second problem, 8, is fixed at at its latest value and the following

problem is solved for 8, and 6.

min | (Y () + ga(k)0a — du(k)0y 60 (k)0,) W (74)],

An initial guess for the linear part in the first problem is to assume that

the linear block is an all-pole system (i.e., bp = 1,b; = 0 for ¢ # 0). The



frequency weighting at each iteration is computed as the product of the
previous weight and the error computed using the latest available model.
An initial value of the weight is given by W (e/“¥) = 1 Vk. A summary of
the proposed algorithm is given below.

The identification Algorithm

Given m,n, N, and {(z(k),y(k)),k =1,2,...}.
Step 0:Compute the N-point FFT of y(k) and z;(k).
Step 1: Let by = 1,b; =0 for i 0,1 = LW} =1 for k € [1, N].

Step 2: Compute 8, and 8, using

0
Y = @™we)leTwy
6y
where

=[-8, —d,

and

W = diag(W'(1) W(2),---,W{N))

Step 3: Scale 6, and 8, using

0
Oy =v1 0, 6,=(-"2)
U1
Step 4: Update the weight using
k)6,
Wik) = Wik x [y (k) — —2eB)8 4

Step 5: Now fix 8, and Compute 8, and 8, using

0
Yl =@ w oy telwy
By
where

(1)2 = [_(I)a (I)b]

Step 6: Update the weight as in step 4.

Step 7: Set 1=1+1 and goto step 2.



Remark 1 The algorithm is terminated after a fixed number of iteration
and the identified model is selected as the one that gives the least error.

4 Examples

Two examples are presented here to illustrate the algorithm.

4.1 Example 1

The nonlinear system being identified is shown in Figure 3. The apriori

information n = 1,m = 2 are assumed

z(t u(t i
( ) "u =+ 17Z‘2 ( ) 1+:§i11—1 y( )

Figure 3: True Model, Example 1

The input x(k) is generated as a uniformly distributed sequence of mag-
nitude 1. The measurement noise is uniformly distributed with different
levels 1=0,.02 and 0.05. The algorithm uses 1024-point FFT for computing
the identified model.

The identified model( after 10 iterations ) is given in Table 1.

Noise Level | Nonlinear block Linear Block || Error| s
0 u(k) = z(k) + 0.16982% (k) | G(z) = ;2290 0.0126
01 u(k) = z(k) + 0.17422% (k) | G(z) = 20002402392 | (.5004
.05 u(k) = z(k) + 0.13912%(k) | G(z) = =00012218.2416 | 9 1926

Table 1: Identified Models With different measurement noise level

It is observed that the infinity norm of the error is close to the maximum

magnitude of the frequency response of the error signal.



4.2 Example 2

Consider the following nonlinear system. The nonlinear block is described
by
z(t) = z(t) + 0.272%(¢) + 0.1523(2)

and the linear part is described by

Glz) = 0.6 +0.2527 " +0.22272 + 0.12°
A 1Y 052 1+0322+0.1z3

Sequence of 300 input-output data points are generated with measure-
ment noise levels 0,0.01 and 0.05. Ten iterations of the proposed algorithm

was used with N = 1024 and the result is shown in Table 2.

14+0.10362z—140.13802—2—0.0289z—3

Noise | Nonlinear block Linear Block || Error||so
— 2 3 | A(s) — 0.599640.22592~"40.22412~>10.08932 3
0 u=z+0.2723z% + 0.1488z° | G(z) = 1+0.4599z_f+0.3039z_§+0.0872z_§ 0.0303
~ -1 -2 -3
001 | u=x+0.288927 + 0.13832° | G(z) = Q500 H0082Te 402081, 4 0 e — | 0.2306
005 | u=z+0.583622 + 0.03702° | G(z) = 23199+0.01652 1 +0.1249:7740.0065: % | 1 1599

Table 2: Identified Models With different measurement noise level

5 Conclusions

In this paper, a new iterative procedure to identify Hammerstein models is
proposed. The algorithm minimizes the infinity norm of the deviation be-
tween the true model and identified model. Illustrative examples were given
to demonstrate the algorithm. It is observed form the above examples that
the infinity norm of the deviation error is close to the maximum magnitude
of the frequency response of the measurement noise.
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