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Abstract: The authors present a new classified 
dynamic partial search structure for the stochastic 
codebook of the FS1016 CELP coder to replace 
the fixed partial search for selecting the best exci- 
tation vector of the stochastic codebook. In the 
proposed scheme, the conventional one-stage 
stochastic codebook search is substituted with a 
two-stage dynamic method for reducing the com- 
putational complexity without degrading the voice 
quality. The establishment of this structure is 
based on two classifiers, one for the line spectrum 
pairs (LSP) of the input signals, and the other for 
the autocorrelation coefficients (AC) of the sto- 
chastic codebook search target. In addition, the 
stochastic codebook is classified into K sub- 
codebooks, and with these two classifiers it is pos- 
sible to determine dynamically which 
subcodebook needs to be searched. This method 
achieves a reduction in the search procedure by a 
factor of 2-8. The efficiency of these two classifiers 
is discussed and the comparison of the per- 
formance between the fixed partial search and the 
proposed technique is also addressed. 

1 Introduction 

Many potential applications for low bit rate speech 
coding algorithms demand good speech quality at a rea- 
sonable cost. The ability to encode the speech at low bit 
rates without destroying voice quality is becoming 
increasingly important in the new digital communication 
environment. 

The code excited linear predictive (CELP) coder 
jointly developed by the DoD and AT&T Bell Labor- 
atories [l] has been proposed as the US Government 
standard 4.8 kbit/s voice coder [2]. The computational 
requirement of CELP is dominated by the adaptive 
and stochastic codebook searches. The full stochastic 
codebook search procedure has a heavy computational 
load due to the convolution operations between the exci- 
tation vectors and the linear predictor filter. The fixed 
partial search scheme is the most popular method to 
reduce the computational load, but the speech quality 
will be degraded when using such a partial search 
scheme. The recent development of fast methods for the 
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CELP coder [3-51 have provided potential algorithms to 
reduce the computational complexity of codebook 
searches. But the cost is still high if the exhaustive search 
is adopted. Performance constrained algorithms such as 
tree structure [SI, finite state structure [7, 81, neural 
network [9, IO] and the preselection schemes [11-131 are 
also proposed for reducing the coding time. The above 
performance constrained strategies are hard to apply 
directly to the FS1016 CELP coder because they are all 
constructed based on the special codebook structures. In 
Reference 14, Mauc mentions a multistage method for 
eliminating the irrelevant codevectors of the stochastic 
codebook of FS1016. 

In this paper we present a dynamic partial stochastic 
codebook search (DPSCS) method for the FS1016 CELP 
coder. The emphasis of this work is on the efficient search 
procedure of the stochastic codebook with two classifiers. 
Our approach would not only reduce the computational 
effort but also have a high hit rate for the optimal code- 
word without degrading the voice quality. The proposed 
dynamic partial search method is based on two classi- 
fiers, one for the line spectrum pairs (LSP) of the input 
signals and the other for the autocorrelation coefficients 
(AC) of the target signals of the stochastic codebook. The 
target signal of the stochastic codebook search is the 
weighted linear prediction residual plus the encoding 
error and minus the filtered adaptive codebook VQ exci- 
tation [2] (described in Section 2). In addition, the whole 
stochastic codebook is first classified into K sub- 
codebooks with S codewords and then which sub- 
codebook needs to be searched is determined by these 
two criteria parameters. In our DPSCS system, the 
adaptive codebook search is the same as the convention- 
al FS1016 CELP coder, but the stochastic codebook 
search procedure has been replaced with a two-stage 
dynamic partial search scheme. The merits of the pro- 
posed scheme are (1) less extra memory required, (2) a 
higher hit rate for the optimal codevector, (3) reducing 
the complexity by a factor of 2-8 and (4) no degrading of 
the synthetic speech quality. 

This paper is organised as follows. Section 2 briefly 
gives an overview of the conventional CELP coder algo- 
rithm. Section 3 describes the proposed DPSCS struc- 
ture, including the establishment and incrementally 
updating procedures. Section 4 discusses the efficiency of 
the classifiers and shows the experimental results. Finally, 
we present our conclusions in Section 5. 
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2 CELPcoder  

Like all vector quantisation techniques, CELP coding is 
a frame-oriented technique that breaks the sampled input 
signal into blocks of samples that are processed as one 
unit. CELP coding is based on analysis-by-synthesis 
search procedures, perceptually weighted vector quanti- 
sation (VQ) and linear prediction (LP). The block 
diagram of the CELP coder is shown in Fig. 1. A 10th- 
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Fig. 1 Block diagram ofCELP coder 

order LP filter is used to model the short-term spectrum 
of the speech signal, or formant structure. Long-term 
signal periodicity, or pitch, is modelled by an adaptive 
codebook VQ. The residual from the short-term LP and 
pitch VQ is vector-quantised using a fixed stochastic 
codebook. The optimal scaled excitation vectors from the 
adaptive and stochastic codebooks are selected by mini- 
mising a time-varying, perceptually weighted distortion 
measure that improves subjective speech quality by 
exploiting masking properties of human hearing. 

This class of coders operates on sampled speech on a 
frame-by-frame basis. A filter is used to describe the spec- 
tral envelope of the speech signal. The coefficients of the 
filter are obtained using the linear prediction (LP) tech- 
nique. They are quantised so that the same filter can be 
constructed at both the transmission and reception ends 
of the channel. The excitation for the filter is determined 
using an analysis-by-synthesis procedure [lS]. A set of 
candidate excitation sequences is stored in a codebook, 
and synthetic speech is generated using each of these 
sequences. The index of the sequence producing the most 
accurate speech is then transmitted to the reception end 
of the channel. 

Typically, the search for the optimal codebook vectors 
is done sequentially. The adaptive codebook is searched 
first, followed by a search of the fixed stochastic code- 
book. For each codebook, the optimal gain coefficient 
can be computed and, after all codebook indices have 
been found, the gain coefficients can be recomputed by 
solving a set of linear equations. 

The error weighting filter W(Z) is based on the short- 
term predictor A(Z) with p coefficients: 

P 

A(Z) = 1 - a(k)Z-k (1) 
k = l  

where y is typically 0.8. 
Let H and W be L x L lower-triangular matrices 

whose columns contain the truncated impulse of the LP 
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filter and error weighting filter, respectively, excited by a 
unit impulse on the diagonal: 

r h,  o o . . .  01 

The adaptive codebook search target [2] can be rep- 
resented as 

T. = W(S - 90') (3) 
where S is the original speech signal and s(') is zero input 
response. The optimal excitation vector will be selected 
with the MSPE criterion. Let o be the best codeword for 
the adaptive codebook search stage; then the stochastic 
codebook search target [2] can be written as 

T , = T , - W H u  (4) 
The CELP coder's computational requirements are 
dominated by the two codebook searches. The computa- 
tional complexity and speech quality of the coder depend 
on the search sizes of the codebooks. Any subset of either 
codebook can be searched to fit processor constraints, at 
the expense of speech quality. 

3 DPSCS architecture 

Fig. 2 shows the flow chart of our dynamic partial search 
architecture. The criteria parameters are the LSP of the 
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Flow chart of dynamic partial stochastic codebook search 

current frame and the autocorrelation coefficients (AC) of 
the stochastic codebook search target T ,  (see eqn. 4). As 
the LSP parameters are extracted from each frame of 
input speech, the LSP cluster number i is determined 
with the Euclidean distance measurement. After the 
adaptive codebook search procedure, the AC cluster j is 
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determined with the first-order AC of target signal T,. It can be observed that the cumulative distribution of 
With the LSP cluster i and AC cluster j ,  we can dynami- 1 - a(1) is very similar to the y density function as shown 
cally determine the partial codebook cb(k) from the entry in Fig. 5. The curve of the y cumulative distribution can 
h(i, j )  of the codebook search transform matrix (CSTM). be divided into M equal areas, each area corresponding 
The CSTM contains the pointer which indicates the to one AC cluster. That is, each cluster contains the same 
subset of the stochastic codebook that needs to be a(1) samples. Intuitively, multiorder AC classifiers may 
searched. The overall DPSCS system (shown in Fig. 3) achieve better performance, but our experiments 
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includes the training and encoding phases. In the training 
phase, the LSP classifier and the CSTM will be con- 
structed. The training and dynamic modification pro- 
cedures of the DPSCS system will be described in detail 
as follows. 

3.1 Autocorrelation classifier 
The first stage of the proposed DPSCS scheme uses the 
AC of the stochastic codebook search target T, to rep- 
resent the waveform. There are two reasons for using the 
AC as the basis for classification. One is that AC can be 
used to classify the two different signals, and another is 
that the signal's AC will keep the same when scaled by a 
constant, and hence the gain's influence on the AC is dis- 
abled. To reduce the range of these coefficients distrib- 
uted, the mth-order normalised AC, a,(m), is used and 
defined as eqn. 5 : 

Overall system of DPSCS 

(5 )  

where x is the input signal and U is the mean of the x 
values. 

The experience distribution of 1 - a(1) is shown in 
Fig. 4, where a(1) represents the 1st-order AC of the 
target signal. The y distribution can be used to model the 
1 - a(1) distribution, (1 - adl) z fix)), and the y dis- 
tribution is defined as eqn. 6: 

partial slmhastic 

(described in Section 4) show that there is high corre- 
lation of a(1) between the target and the optimal syn- 
thetic signals, but low correlation of 4 2 )  and 43). 
Therefore, only one AC classifier is used in our final 
DPSCS structure. While searching the optimal codeword 
in the stochastic codebook, we first calculate a(1) of the 
target signal and then determine the cluster to which 41) 
belongs. 

3.2 LSP classifier 
The LSP analysis-synthesis method was first proposed by 
Itakura and Sugamura [16]. This method is treated as 
one of the most efficient speech analysis-synthesis tech- 
niques. Recently, there has been a growing interest in the 
use of the LSP parameters to code the short-time speech 
spectral [17, 181. In the second stage of the proposed 
DPSCS scheme, we adopt the LSPs as the classifier cri- 
teria parameters. Initially, the LSP classifier with only 
one cluster is constructed. Determine the upper-bound 
LSP cluster number N, and the cluster number n (n < N) 
at the first training procedure. That is, we split the given 
LSP training sequence X into n partitions in the training 
phase (described in Step 3 of Section 3.3). Since it is 
impossible to collect all the LSP samples, the LSP classi- 
fier must be adaptive. If new training data come, the 
DPSCS just needs to employ the dynamic modification 
algorithm (described in Step 1 of Section 3.4) to modify 
the LSP classifier or increment one cluster. 

The LBG algorithm [19] is employed to classify the 
LSP parameters with the Euclidean distance. The train- 
ing process begins by calculating the Euclidean distance 
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d,, between each cluster’s centroid W, and the input 
vector xq according to 

P 

p =  1  
4, = I1 w, - x, I1 = c (Wmp - X q p l 2  (7) 

240[ 200 r\ 

Fig. 4 Histograms of I ~ 41) of target signal 

0.2c / 

Fig. 5 
with a = 3.64 and f l =  5.722 

Cumulative distribution curves of I - a(l) ,  and y distribution 

where P is the dimension of the input vector. 
This classifier architecture is similar to the memoryless 

one-stage vector-quantiser. By selecting the minimum 
Euclidean distance between the input LSP parameters x 
and each cluster’s centroid, we can determine the LSP 
cluster to which the input LSP belongs. 

3.3 Training of DPSCS 
To obtain the dynamic partial stochastic codebook 
search (DPSCS) structure, two classified stages must be 
established first. For the LSP classifier stage, a simple 
vector quantiser with Euclidean distance is used. For the 
AC classifier stage, a scalar quantiser is used. The corre- 
sponding codewords for both quantisers are obtained 
from the training classified database. 

With the above description, the algorithm for these 
two classifiers is shown as follows: 

Step I :  Determine M ,  N and S, where M is the cluster 
number of AC, N is the upper bound of the LSP cluster 
number, and S is the subset size of the stochastic code- 
book. 

Step 2: Determine the set of AC quantisation bound- 
aries, { U@), U( I), . . . , u(M)} : l,-i + ( i  5 - B )  f fori  = 1,2,  ..., M - 1 

u(i) = (8) -1 for i = 0 
I 1  for i = M 
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where A is the lower bound of cluster i, B is the total 
number of the classes whose ACs are smaller than A, and 
T represents the total AC samples. By sorting all the AC 
samples, we can find a range from A to A + I containing 
t AC samples such that the numbers of ACs is as close to 
TIM as possible for each cluster. An alternative method 
of the AC classifying technique is the use of the y dis- 
tribution for modelling the AC distribution. The y dis- 
tribution curve can be divided into M parts with equal 
area, and each part indicates an AC cluster. The quanti- 
sation boundaries can be determined from a lookup 
table. 

Step 3: Classify the given LSP training sequence X 
into n partitions {R(l), R(2), . . . , R(n)}, and determine the 
corresponding centroid set {W(1) ,  W(2) ,  ..., W(n)} and 
variance set { Y ( l ) ,  V(2), ..., Y(n)}. The detailed training 
algorithm for classifying LSPs is described as follows: 

(1) Define the training sequence X = { x l ,  x2 ,  ..., x,}, 
the cluster number n, n < N, and the distortion threshold 
E 2 0. 

(2) Initially, only one cluster has been constructed: 
li = 1, the partition R ( l )  = X ,  cluster centroid 
W(1) = E(x I x E R(l)), and the variance Y(1) = 

x - W(1) 11’ I x E R(1)), where E denotes the expecta- 
tion. 

(3) Split the cluster which has the maximum variance 
into two clusters: A = ri + 1. 

(4) Determine the partition set {R(1), R(2), . . . , R(A)}: 

R(j )  = E(x I d(x, W ( j ) )  < d(x, W t ) )  

fori, t = 1, 2, ..., A (9) 

(5 )  Record the cluster centroid W = W and determine 
where d indicates the Euclidean diskance function. 

the new cluster centroid set { W( l), W(2), . . . , W(A)} : 

W ( j )  = E ( x l x  E R(j)) for j = 1, 2, ..., A (10) 
(6) Repeat (4) and ( 5 )  until the distortion (D6-l  

- D,)/D(A) < E, where 

(1 1) 
1 
n D, = 

(7) Determine the variance set, { V(l), V(2), . . . , V(li)}: 

d(W(j) - Rj)) for j = 1, 2, ..., A 

Vi)  = E(ll x - W ( j )  II I x E R(j ) )  
for j = 1, 1, . . . , A (12) 

(8) If ri < n goto (3) else stop. 
Step 4 :  Obtain the codebook search transform matrix 

(CSTM), hMN. First, define the set C of all the subsets of 
the stochastic codebook, 

C = {cb(O), ..., cb(k), ..., cb(512 - S ) }  

where cb(k) consists of S contiguous codewords of the 
stochastic codebook (SC) beginning with the kth code- 
word 

cb(k) = {SC(k), SC(k + I), . . . , SC(k + S - 1)) 

Then the CSTM can be obtained according to 

(13) 
2 x max,Q(i, j ,  k) for i < M, j < n 

for n < j < N h(i, j )  = 

where max, will return k which maximises Q(i, j ,  k), and 
Q(i, j ,  k) is the frequency matrix which accumulates the 
frequency of 41) of the synthetic signals in the interval 
(u(i - l), u(i)). The constant 2 represents the offset factor 
due to the consecutive two codevectors of the stochastic 
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codebook overlapping 58 samples. These synthetic 
signals are obtained from filtering all the codevectors in 
the subcodebook cb(k) with all the linear predictors in 
R(j). Then AC cluster i and LSP cluster j can determine 
the start address for searching the subcodebook. 

3.4 Dynamic modification of DPSCS 
An incrementally updating mechanism is used such that 
the search structure can be modified dynamically and 
increase the system performance. The self-learning stru- 
ture for updating the LSP classifier and the codebook 
search transform matrix (CSTM) is shown in Fig. 6. The 

LSP Input 

stochastic 

i delta matrlx I 
I 

I 4 
I 

I 

Fig. 6 
search transform matrix (CSTM)  

Dynamic modqication structure for LSP classifier codebook 

incrementally updating procedure will be described in the 
following two steps: 

Step 1 :  Determine the LSP cluster J for the input LSP 
parameters: 

.I={ 

minj d(x, W( j ) )  for d(x, W(j)) < d(x, W(t)) 
and d(x, W j ) )  < (V(t)) (14) 

n + l  otherwise 

where 1 < t, j < n, and minj will returnj which minimises 
d ( X ,  W(j)). If J < n, then we modify the R(J), V(J)  and 
W(J)  by eqns. 9, 10 and 12; otherwise if n < J < N ,  then 
we reallocate and initialise R(J), W(J),  V ( J )  and h(M, J). 
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Step 2: Modify the CSTM h(i, j): 

Q(i, J ,  k )  = Q(i, J ,  k )  + q(i, x, k) for all i, k (15) 
h(i, j) = 2 x max,Q(i, J ,  k) (16) 

q(i, x, k) is the delta matrix which accumulates the prob- 
ability of the AC of the optimal synthetic signals which 
lie in the interval (u(i - I), u(i)). The optimal synthetic 
signals are obtained from filtering all the codevectors in 
subcodebook ch(k) with the input LSP parameters x. 

4 Experimental  results 

The speech database used about 36 balanced sentences, 
spoken by six male and six female speakers. We used the 
sentences from five male and female speakers as the train- 
ing sequence, and those form the remaining speakers as 
the test sequence. The sentences used in training were not 
repeated for testing. Speech signals were sampled at 
8 kHz. 

In the first experiment, the efficiency of the 1st-order 
AC classifier is studied and analysed. Fig. 4 shows the 
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histogram of a(1) of the target signal, where 41) means 
the value of the 1st-order AC. The cumulative distribu- 
tion curves (shown in Fig. 5) between 1 - a(1) and the y 
distribution with a = 3.664 and B = 5.722 are very 
similar. The y distribution curve can be divided into M 
parts with equal area, and each part indicates an a(1) 
cluster. Because the correlation coefficient of 41)  between 
the target and the optimal synthetic signal is 0.776, it is 
efficient to use a(1) for classifying the synthetic signal. 
The relative frequency distribution is shown in Fig. 7. 
The same experimental conditions are also applied to the 
2nd- and 3rd-order AC classifiers. The quantisation 
boundaries of these three-order AC classifiers are listed in 
Table 1, and the correlation coefficients between target 
and optimal synthetic signal are listed in Table 2. Finally, 
the high-order AC classifiers’ effect on the system per- 
formance is very limited, and thus only the 1st-order AC 
classifier is used in our DPSCS structure to save memory 
space and computational effort. 

For the next simulation, we evaluate the DPSCS per- 
formance with various LSP cluster numbers, AC cluster 

Table 1 : Quantisation points of 1st-3rd-order autocorrelation coefficients with 15 clusters 

Cluster 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

a(1) -0.23 -0.47 0.08 0.17 0.24 0.30 0.36 0.41 0.46 0.51 0.56 0.60 0.65 0.71 0.79 
a(2) -0.13 -0.29 0.00 0.06 0.10 0.14 0.17 0.21 0.24 0.28 0.33 0.37 0.42 0.49 0.59 
a(3) -0.18 -0.13 -0.06 -0.02 0.00 0.04 0.08 0.11 0.14 0.17 0.21 0.24 0.29 0.35 0.45 
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numbers and subcodebook sizes as parameters. Both 
objective and subjective tests are used to measure the 
synthetic speech quality. On the objective tests, the influ- 

Table 2: Correlation coefficients between optimal synthetic 
speech signal and target signal 

Autocorrelation a l l )  a12) a13) 

Correlation coefficient 0.766 0.467 0.505 

ence of the LSP and AC classifiers on the hit rate and 
SNRSEG (segmental SNR) is estimated. Fig. 8 shows 
simulation results of the hit rate for the optimal code- 

word with various subcodebook sizes, AC cluster number 
as indicated and fixed LSP cluster number N = 48. 
Meanwhile, the fixed AC cluster number M = 12, with 
various LSP cluster numbers N = 23, 48, 57, 78, 96 and 
subcodebook sizes S = 64, 128, 256 are the parameters 
for evaluating the effect of the LSP classifier on the 
SNRSEG. The results are listed in Table 3. In general, 

Table 3:  Objective tests for influence of LSP classifier on 
resulting speech quality in terms of SNRSEG (dB) with 
various subcodebook sizes S = 64, 128, 266. LSP clusters 
N = 23,48,67.78.96 and a fixed AC cluster M = 12 

S=64, M = 1 2  

LSP Clusters N = 23 48 57 78 96 

SNRSEG (dB) 9.2 9.3 9.3 9.5 9.7 

S=128. M = 1 2  

SNRSEG (dB) 9.8 10.0 10.2 10.5 10.5 

S=256, M = 1 2  

SNRSEG (de) 10.3 10.4 10.4 10.5 10.7 

these two experiments show that the speech quality is 
proportional to the cluster number of these two classi- 
fiers. On the subjective tests, the mean opinion score 
(MOS) [20] is used to measure the resulting speech 

quality. Thirty-two listeners were asked to answer a ques- 
tionnaire consisting of ten questions (sentences). First, we 
present some samples of good (score 4) and bad (score 1) 
speech before the test in order to anchor the listeners. 
The DPSCS and static partical search coders with sub- 
codebook sizes S = 64, 128,256 and the full search coder 
are played randomly to the listeners. One female and one 
male speak each sentence on each coder twice and the 
listeners are required to score the synthetic speech 
quality. Table 4 lists the effects of the subjective tests. The 
comparisons of the SNRSEG and MOS between DPSCS 
and the static partial search are also discussed in the 
experiment (N = 48, M = 12). In addition to the speech 
quality comparisons, the extra computational effort over 
the static partial search is listed in the first column of 
Table 4. On the whole, the DPSCS can be applied to the 
FS1016 CELP coder directly and have good synthetic 
speech quality. The MOS tests show that the DPSCS 
with S = 128 has a higher score than the static partial 
search with S = 256, and it is very close to the full search 
quality when S = 256. 

Finally, a syllable /pa/ was segmented into consonant 
and vowel parts as test data for a typical experiment. In 
this case, we evaluate our system with LSP clusters 
N = 48, AC clusters M = 12 and subcodebook size 
S = 128. The original and synthetic speech waveforms of 
the consonant and vowel parts are shown in Figs. 9a and 
b, respectively. 
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Fig. 9 Typical experiment for (a)  consonant and (b) Dowel parts in 
speech /pal, with LSP clusters N = 48, a ( / )  clusters M = I2 and sub- 
codebook size S = 128 under our proposed DPSCS system 

~ synthetic speech waveform 
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5 Conclusions 

We have described a new dynamic partial stochastic 
codebook search (DPSCS) structure for the CELP speech 
coder. The DPSCS scheme provides a two-stage search 
procedure which reduces the computational effort dra- 
matically without degrading the synthetic speech quality. 
From the experimental results, DPSCS always has better 
quality than the fixed partial search structure, at the 

Table 4: Comparisons of SNRSEG and MOS between DPSCS and static partial 
search with subcodebook sizes = 64,128,266 

Codebook Extra SNRSEG MOS MOS MOS 
size comput. (dB) (male) (female) (mean) 

DPSCS Static DPSCS Static DPSCS Static DPSCS Static 

64 0.07 9.3 9.0 2.82 2.42 2.52 2.16 2.67 2.29 
128 0.04 10.0 9.5 2.98 2.54 2.64 2.20 2.81 2.37 
256 0.02 10.4 10.1 3.16 2.80 2.88 2.34 3.02 2.57 

51 2 10.8 3.24 2.88 3.06 
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small expense of extra computational complexity for 
selecting a potential subcodebook. The DPSCS structure 
has been realised with software simulation and a 
TMS320C30 DSP chip. From the experimental results, 
the performance of the modified 4.8K CELP system is 
faster than the conventional 4.8K CELP by about 25% 
without degrading the synthetic speech quality. Some 
further work on the DPSCS scheme will be performed, 
including increasing the hit rate for the optimal code- 
word, and on the more efficient classifier for the stochas- 
tic codebook. 
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