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Detection of Helicopters Using Neural Nets
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Abstract—Artificial neural networks (ANNs), in combination
with parametric spectral representation techniques, are applied
for the detection of helicopter sound. Training of the ANN detec-
tors was based on simulated helicopter sound from four helicopters
and a variety of nonhelicopter sounds. Coding techniques based on
linear prediction coefficients (LPCs) have been applied to obtain
spectral estimates of the acoustic signals. Other forms of the LPC
parameters such as reflection coefficients, cepstrum coefficients,
and line spectral pairs (LSPs) have also been used as feature vec-
tors for the training and testing of the ANN detectors. We have also
investigated the use of wavelet transform for signal de-noising prior
to feature extraction. The performance of various feature extrac-
tion techniques is evaluated in terms of their detection accuracy.

Index Terms—Helicopter detection, linear prediction coefficient
(LPC), line spectral pair (LSP), neural networks (NNs).

I. INTRODUCTION

H ELICOPTERS are highly mobile tactical weapon plat-
forms. A helicopter can be used as an intruder’s trans-

port, and as an escape vehicle after an intrusion has been com-
mitted. The low-flying ability of such aircraft enables them to
penetrate the defense system, undetected by conventional radar.
Building a system of remote sensors to detect and track single
and multiple very low-flying helicopters is an important defense
problem. Detection of helicopters using their sound signatures
has been a focus of a number of recent research works [1]–[8].
The conventional method for helicopter sound detection uses
the ratio of the main and tail rotor frequencies and their har-
monics as the key helicopter noise features. However, most of
the helicopter sound detection studies have used simulated spec-
trums based on only a fixed discrete spectrum from the rotors. In
this paper, we propose an artifical neural network (ANN)-based
helicopter sound detection system. The detection study of this
paper is based on a helicopter sound simulator designed to pro-
duce more realistic sound characteristics of the helicopter’s ro-
tors, including the effect of aerodynamic vortex shedding, blade
thickness noise, Doppler effect, as well as the atmospheric at-
tenuation, and terrain effects [9].

Mori et al. [1], [2] investigated the use of a network of re-
mote sound sensors to detect and track single and multiple very
low-flying helicopters where information from different sensor
nodes was exchanged to improve the resolution of the sound de-

Manuscript received May 12, 1999; revised December 26, 2000. This work
was supported by King Fahd University of Petroleum and Minerals.

S. Akhtar and M. Elshafei-Ahmed are with the Department of Systems En-
gineering, King Fahd University of Petroleum and Minerals, Dhahran 31261,
Saudi Arabia.

M. S. Ahmed was with the Department of Systems Engineering, King Fahd
University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia. He is now
with E/E Engineering, DaimlerChrysler Corporation, Auburn Hills, MI 48326
USA.

Publisher Item Identifier S 0018-9456(01)04387-X.

tectors. Feder [3] studied the problem of estimation of the fun-
damental frequency of the helicopter rotor in the presence of a
wide band interfering signal, e.g., generated from a nearby jet
engine. The aperiodic nature of the helicopter signal is modeled
as a strictly periodic component with an interfering Gaussian
noise with unknown spectrum. The parameters of the model
are estimated using a likelihood function. Zhiping [4] applied
cyclostationary estimation techniques for helicopter signal de-
tection subject to time-varying Doppler shift and in the pres-
ence of possibly nonstationary background noise. He also used a
cyclic frequency smoothing method to have a better estimate of
the average fundamental frequency of the time-variant Doppler
shifted helicopter acoustic signal. Cabellet al.[5], [6] proposed
two pattern classifiers: 1) a statistically based Bayes classifier
and 2) an ANN classifier. Selected peaks of spectral amplitudes
of the fundamental and first seven harmonics are fitted to least
square regressions and used as features for the ANN classi-
fier. The Bayes classifier identified 67% of the audio segments
of three helicopters while the ANN classifier was correct 65%
of the time. The results suggested that additional features cov-
ering more about signal generation and propagation should be
included in the ANN training to improve the performance.

Elshafei and Ahmed [7] used a recorded helicopter sound and
a number of nonhelicopter sounds to train their ANN detector.
They utilized feature vectors based on the main spectral peaks
and other components in the frequency band from 150 Hz to
350 Hz. The Goertzel algorithm (GFFT) was used for evaluating
the spectrum. Feature vectors of length 30 were used as input
vectors for the training and testing of the classifier. The ANN
classifier with one hidden layer of neurons was used. The results
obtained have shown 99.5% correct detection of helicopter over
test samples.

In this paper, different spectral parameters, such as linear pre-
diction coefficients (LPCs), reflection coefficients (RCs), LPC
cepstrum coefficients (CCs), and line spectral pairs (LSPs) are
investigated.

In the following section, we briefly give an overview of the
structure of the ANN- based pattern classification procedure
as used for helicopter sound detection. The third section out-
lines the key features of the simulator used to generate the heli-
copter acoustic signal. Extraction of the feature vectors using the
LPC-based techniques is given in Section IV. The simulation re-
sults are given in Section V. Finally, Section VI addresses some
possible strategies for improving the detection performance in
the presence of noise.

II. DETECTIONUSING PATTERN CLASSIFICATION

A pattern classification system aims to classify an object
based on its previous knowledge of it. Such a system oper-
ates in three phases: a training phase, a testing phase and a
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Fig. 1. Feature extraction steps.

Fig. 2. Multilayer FFANN.

classification phase. A pattern classification system consists
of a feature extractor and a classifier. The feature extractor
normalizes the collected data, removes irrelevant information,
enhances interclass similarities and transforms them to the
feature space. The classifier takes these features and attempts to
draw a clear distinction among objects from different classes.
The sequence of operations in converting the helicopter/non-
helicopter acoustic signals into a set of parameters suitable for
the classification process is shown in Fig. 1.

The first function of the front-end parameterization stage is
to divide the input audio signal into frames, which are digitized
prior to analysis. The characteristics of helicopter sound can be
considered stationary over time frames of 0.05–0.5 s. On the
other hand, the dominant components of the helicopter signal
are located in the freqency range below 2 kHz. Therefore, a
low-pass filter of cut-off frequency 2 kHz is utilized to filter
the signal. This pre-processing step removes some irrelevant in-
formation and enables us to down sample the signal to 4 k sps.
The next step involves the multiplication of the signal by a fi-
nite-duration smoothing window. The type of window chosen
(shape and duration) influences the time and frequency resolu-
tion. The feature vectors, obtained from this windowed signal,
affect directly the complexity and effectiveness of the subse-
quent stages. The paper investigates several parametric repre-
sentations of the helicopter spectrum, e.g., LPC [10], [11], and
a number of other additional transformations, such as, RC, CC,
and LSP [12]. Wavelet transform [13] is also evaluated for signal
de-noising prior to feature extraction.

The classifier is chosen here to be a feed forward artificial
neural network (FFANN). The capability of learning from ex-
amples, the ability of reproducing arbitrary nonlinear functions
of input, and the highly parallel and regular structure of ANN
make them especially suitable for pattern classification [14],
[15]. ANN is also superior in situations where it is difficult to

quantify the statistical properties of the phenomena as in the
case of helicopter signal.

The feature vectors are applied as input to the network. At
the training stage, the network adjusts its variable parameters
(synaptic weights) to capture the features of the object. A
FFANN consists of simple processing elements called neurons.
Each neuron is basically a weighted summation node followed
by a scalar nondecreasing output function called theacti-
vation function. These neurons are arranged and interconnected
in multilayer structures, as shown in Fig. 2.

The back propagation (BP) algorithm is usually used for net-
work training [14], [15]. Although BP is simple, it requires a
lot of experimenting to choose a good learning rate. A slow
learning rate will result in a long convergence time, whereas
fast learning rate will possibly lead to oscillations, preventing
the error from falling below a certain value, and remaining at
a local minimum. The algorithm in general does not guarantee
convergence to the global minimum. To solve these problems,
several variants of the BP algorithms were proposed in the lit-
erature, e.g., [16]–[18].

Radial basis function networks (RBFNs) [15] offer a viable
alternative to the two-layer FFANN. RBFN uses hybrid unsu-
pervised and supervised learning schemes. RBFN can be trained
several orders of magnitude faster than the BP FFANN. How-
ever, in general it cannot quite achieve the accuracy of the BP
networks. Moreover, if RBFN is purely trained in supervised
mode with BP learning, it does not learn appreciably faster than
the BP FFANNs [15, Sec. 12.6].

III. SIMULATION OF HELICOPTERACOUSTICSIGNAL

Training of the ANN detection system using recorded sound
of various helicopters and under every possible flight condition
is neither economical nor practically possible. An alternative
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practical approach is to utilize a reliable simulator based on the-
oretical and empirical prediction studies [19]–[23].

The simulator used in this work consists of the following four
parts [9]:

1) Helicopter database, which contains the key physical pa-
rameters of each helicopter.

2) Flight trip simulator, which includes such variable param-
eters as speed, initial observation point, and 3-D flight
path with respect to the observer.

3) Disturbance model, which includes fading, Doppler shift
due to wind gusts, and sound interference, e.g., jet engine
noise.

4) Sound production model.

A typical section of a helicopter acoustic signal, a real sound
recording of UH-1, is shown in Fig. 3. It consists of a tonal sig-
nature, a combination of tones from the main rotor (3–40 Hz),
the relatively higher tones due to the tail rotor (25–110 Hz), a
broad-band noise generated from the laminar flow and vortex
wakes (120–600 Hz), noise emitted by the engine drive train
components (60–100 Hz), power turbine shaft and the gas gen-
erator/compressor turbine (900–2000 Hz), in addition to the ef-
fect of ground reflection and the atmospheric attenuation which
are significant above 500 Hz [also see (4)]. Fig. 4 shows all of
these distinct frequency components separately and the resultant
narrow-band spectrum of a typical helicopter sound signature.

A. Rotor Noise

Rotor noise is a sum of the noise generated by the main rotor
and tail rotor. The rotor noise is a combination of the rota-
tional noise, vortex noise and discrete frequency noise known
as “blade slap” [19], [21]. The amplitude of each blade-passing
harmonic may be approximated by [24]

(1)

where
number of blades;
distance between the axis of blade rotation and
the observer;
angular velocity of the rotor;
harmonic number;
Mach number of the blade tip velocity;
Bessel function;
angle between the observer and the axis of rota-
tion of the blades;

and lift and drag components, respectively;
speed of sound.

Equation (1) assumes steady blade loading and neglects the
rotor loading harmonics. In our simulation the tip velocity of the
blades is taken also to be constant (about 0.6 Mach). A refined
blade noise formula based on the Quadruple theory has been
suggested in [21], but requires more involved computation. The
broad-band noise is due to the vortex shedding at the airfoil
trailing edge [24]–[27]. The vortex shedding broadband noise
spectrum is approximated by a bell-shaped spectrum [26], [27],

Fig. 3. (a) Time domain of a helicopter signal. (b) Spectrum of a helicopter
signal.

defined in terms of peak frequency “.” The peak frequency
depends upon Strouhal number

(2)

where is the chord length and is blade tip velocity.
The cutoff frequency is taken as and higher

cutoff frequency is with where is
the called quality or shape factor. The broadband noise inten-
sity is estimated using the empirical formula proposed in [28].
The vortex shedding noise is received modulated by the periodic
blade passing waveform.

The effect of the rear rotor is usually much less than that of
the main rotor. Moreover, it is highly sensitive to the aircraft
orientation with respect to the observer. Because of its smaller
diameter, the tail rotor runs at a much higher angular speed than
the main rotor. As illustrated in Fig. 4, it produces a series of
harmonics in a similar manner to the main rotor, but it has a
higher fundamental frequency (40–120 Hz). The effect of the
rear rotor is assumed to follow a cardioid directivity pattern with
its peak in the direction of its wake.

B. Doppler Effect

The time-varying th harmonic component at the observer
can be expressed as

(3)

where accounts for the path and atmospheric attenuation as
it will be discussed shortly, and is the component of the he-
licopter velocity in the direction of the observer. The above
equation shows that the movement of the helicopter induces a
Doppler effect in the form of a frequency shift in the observed
spectrum. This change of th harmonic is given by

. The change in the orientation of the helicopter
with respect to the observer causes a continuous fluctuation in
frequency and the relative magnitude of each of the harmonic
components of the received signal.
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Fig. 4. Helicopter noise narrow-band spectrum [29].

C. Engine Noise

The noise emitted by the engine drive train components,
power turbine shaft (N2), and the gas generator/compressor
turbine (N1) are in the range of 900–2000 Hz [29]. Due to lack
of real data, the two vibration frequencies (N1and N2) of the
engine were fixed in this first version of the simulator. The re-
ceived engine noise is modulated by the blade passing pressure,
and Doppler shifted due to the motion of the helicopter.

D. Attenuation by Air Absorption

Atmospheric attenuation at a temperature of 20C may be
calculated from [30]

dB (4)

where
geometric-mean frequency of the band (Hz);
percentage of relative humidity;
distance between source and receiver (m).

E. Flight Mission

In the simulation, we have considered a helicopter flying at a
constant height and speed. The initial position and the forward
velocity can be selected to simulate varying levels of Doppler
shift and orientation effects.

IV. FEATURE VECTORS

In designing a classifier, the choice of feature parameters of
data is very important, since it greatly affects the overall per-
formance of the system. The method of linear prediction anal-
ysis has been very successful for speech analysis, speech com-
pression, and speech recognition systems. The importance of
the method lies in its ability to provide an accurate estimate of
spectral parameters, and its computational efficiency. This sec-
tion presents a brief account of the parametric spectral repre-
sentation techniques, which are used as feature vectors in this
paper, specifically, LPC, RC, LSP, and CC.

A. Linear Predictive Coding of the Acoustic Signals

The linear prediction technique has proven to be very useful
in providing an efficient representation of the speech signals
[10], [11]. The signal is considered to be wide sense sta-
tionary during a window or frame of length . The signal
can be predicted approximately from only a linearly weighted
summation of past samples. Let this approximation ofbe ,
where

(5)

The coefficients can then be obtained through minimization
of the mean squared prediction error with respect to each of
these parameters. The polynomial

(6)

is called the LP polynomial, and the spectrum of the filter

(7)

approximates the spectral envelope of the original signal. The
linear prediction coefficients obtained by the autocorrelation
method guarantee the stability of this all-pole filter.

B. Reflection Coefficients

Reflection coefficients, usually denoted by , are LP filter
representations in an orthogonal system of coordinates. This
makes these coefficients desirable in pattern matching tasks as
speech recognition systems. The value of the reflection coeffi-
cients does not change as the order of the filter is varied. Among
the important advantages of the reflection coefficients, are their
finite dynamic range, , and natural ordering of the re-
flection coefficients. The reflection coefficients can be obtained
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directly and efficiently from the signal autocorrelation using, for
example, Burg’s algorithm [11].

C. Line Spectral Pairs

The concept of the LSP was first introduced by Sugamura
and Itakura [12]. LSPs encode acoustic signal information more
efficiently than other spectral parameters (log-area ratio, inverse
sine transform) due to the intimate relationship between LSP
and the spectral peaks. The computation of LSP starts from the
LPCs. A new polynomial known as the backward polynomial
can be represented as

(8)

Using and , the following two auxiliary polynomials
can be constructed:

(9)

(10)

while is symmetric, is antisymmetric. Furthermore,
all the roots of the two polynomials occur on the unit circle, and
the LSP are the angular positions of the roots .
If the roots of are inside the unit circle, then the roots of

and lie on the unit circle and are interlaced, starting
with a root of [12].

D. Cepstrum Coefficients

The LPC cepstrum is defined as the Fourier representation
of the logarithmic amplitude spectrum based on LPC modeling.
For a minimum phase LP filter, the LPC cepstral coefficients
are defined as

(11)

A recursive algorithm for computing the cepstrum coefficients
from the LP coefficients can be found in [10]. Cepstrum analysis
is another alternative for obtaining the spectral feature vector.
Cepstrum coefficients have the advantage that frequency re-
sponse distortions introduced by the transmission system are re-
moved [10].

V. SIMULATION STUDIES

In this study, the ANN detection system was trained on he-
licopter and nonhelicopter sounds. Four different helicopters
(S-67, H500, CH-47C, and MI-HIND) were considered in this
problem. Each of these helicopters has a different character-
istic sound due to different rotor blade diameters, number of
rotor blades, chord length, engine power, disc loading factor,
etc. The helicopter sounds were obtained using the simulator
described in Section III. Helicopters were assumed to pass by a
stationary observer. A 28-s simulated sound for each helicopter
was obtained at 11 025 samples per second, and using 16 bits
per sample. Nonhelicopter sounds such as music, conversations,
sound of crossing vehicles, running automobile engine sound,
motor car horns, and motor boat sounds were included in the
training. Helicopter and nonhelicopter acoustic signals were di-
vided into 0.1-s frames as discussed before. Alternate frames

TABLE I
PERFORMANCE OF DIFFERENT FEATURE

BASED CLASSIFIERS

were selected for the training purpose. A new set of helicopter
acoustic signals with different flight conditions was simulated
to be used later to evaluate the performance of various classi-
fiers.

The helicopter signals and the nonhelicopter signals are an-
alyzed and encoded following the steps in Fig. 1. A sigmoidal
tangent function was used in the hidden layers of the con-
structed neural networks, and a linear function was assumed in
the output layer. Helicopter signals were assigned a target of 0.9,
while nonhelicopter signals were assigned a target of 0.1. In the
testing phase, a threshold of 0.5 is used for deciding a helicopter
or nonhelicopter signal. The training set consists of 700 frames,
including 550 helicopter sound frames and 150 nonhelicopter
sound frames. All of the ANN simulation has been carried out
in MATLAB, using the fast-training BP algorithm proposed in
[16].

For the case of LPC, RC, and CC, 20-point feature vectors
were used. For the LSP- based model, a 14-point feature vector
was constructed due to the limitations of the root finding algo-
rithm. All four classifiers have 14 neurons in a single hidden
layer. Input neurons were equal to the input features (20 in
the case of LPC, RC, CC, and 14 in the case of LSP) and a
single neuron was used in the output layer. During training a
sum square error (SSE) goal of 0.01 was assigned initially. After
every fixed number of training epochs, the performance of the
classifiers was evaluated for a test data. At a point where per-
formance degradation was observed, training was terminated.
After training, the performances of the classifiers were checked
on test patterns without noise and patterns corrupted by a back-
ground noise of 18 dB, 12 dB, and 9 dB signal-to-noise ratio
(SNR). Table I summarizes the performance of the four para-
metric model-based classifiers at different noise levels. In the
case of LPC when the conditions were identical to those encoun-
tered in the training set, i.e., no noise was added to the test pat-
terns, there was a small drop in recognition performance. This
indicates that the training data has accounted for most of the
variability in the test data. When the test frames were corrupted
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Fig. 5. Performance comparison of the feature vectors.

by a white Gaussian noise, the simulation indicated that as the
SNR decreases, the noise distorts the spectral peaks, causing a
rapid deterioration in performance. The noise tends to reduce
the dynamic range of the resulting LP coefficients. The peaks
and valleys of the spectrum become blurred [10], [11].

Due to the finite dynamic range of the reflection co-
efficients, the RC-based classifier has shown much faster con-
vergence than the LP coefficients-based scheme. The results for
clean and noisy test data have shown that the classifier has pro-
duced 100% correct detection when no noise was added. Due
to the relatively small dynamic range of the reflection coeffi-
cients, additive noises of relatively low power produce small
variations in the reflection coefficients resulting in satisfactory
performance. However, at higher noise levels, a poor detection
rate was observed.

The CC performance results are also indicative of the fact that
for clean data the detection accuracy has been 100%. However,
the nonlinear log operation has the potential for improper em-
phasis of the low-level noisy portion of the acoustic spectrum
[10]. This fact has caused a severe and rapid degradation of the
performance of the ANN detection based on the CC.

The LSP parameters have both well-behaved dynamic range
and filter stability preservation property. The LSP parameters
are interpretable in terms of the spectral peak frequencies. The
zeros of the LSP polynomials lie on the unit circle, and the roots
of the symmetric and anti-symmetric polynomial are interlaced.
The detection results on clean test data are found to be not much
better than the previous methods. However, LSP feature vectors
have shown in general much better robustness against noise than
the other feature vectors. Fig. 5 shows a composite performance
comparison of different ANN classifiers based on different fea-
ture extraction techniques.

VI. STRATEGIES FORIMPROVING PERFORMANCE

It is clear from the previous simulation results that the
presence of background noise in the helicopter signal could
cause unacceptable degradation in the detection performance.
To counteract the effect of noise, two approaches were inves-
tigated:

2) De-noising of the signal prior to feature extraction
3) Training the system in an environment similar to the test

conditions

On the other hand, the reported identification results are all
based on a frame-by-frame test. Substantial improvement can

TABLE II
CORRECTDETECTION USING DENOISED SIGNAL

be achieved if we utilize the fact that helicopter sound extends
over a long sequence of frames. A simple post-processing tech-
nique to improve detection performance based on a moving av-
erage of the ANN decisions will also be discussed.

A. Denoising of the Signal Prior to Feature Extraction

Substantial research in the signal processing area has recently
been focused on the wavelet analysis technique. This technique
is applied here for de-noising of the acoustic signal prior to the
feature extraction stage. The wavelet transform partitioned the
data into two half bands, namely, a low-frequency band and
a high-frequency band [13]. These bands can be further parti-
tioned into two half bands, and so on. In this way, the signal can
be resolved at various resolutions. In our application, a three-
level decomposition of the signal is performed. Compactly sup-
ported orthonormal wavelet “db3” was used in the analysis. En-
tropy-based criteria are adopted for selection of the de-noising
threshold.

Signal spectral estimates were then obtained from the
de-noised signals in the form of a 14-point LSP. An ANN
classifier having 14 hidden neurons was trained. The results
obtained are shown in Table II. The detection results are better
by 1.2%, 10.3%, and 11.5% for 18 dB, 12 dB, and 9 dB SNR
test signals, as compared to the previously results that were not
de-noised.

B. Training the System in an Environment Similar to Test
Conditions

Another way to make the ANN less sensitive to changes in
spectral shapes due to additive background noise is to train the
network using templates created with background noise. This
conjecture has been tested through simulation study. In this sim-
ulation, an ANN classifier was trained on 1400 frames, 700
frames without noise, and 700 frames with an additive noise
level of 9 dB SNR. The ANN had one hidden layer of neurons
having 14 neurons. The feature vector is obtained in the form
of 14-point LSP. The performance of the classifier is shown
in Table III. The results indicate a noticeably improved perfor-
mance even in the case of heavy background noise.

Fig. 6 compares the detection performance of the best coding
technique (LSP) trained on the clean signal only, the wavelet
de-noised technique, and the performance of classifiers trained
on the noisy as well as the clean signal. The observed trend in
our simulation study consistently indicates that training under
noisy feature vectors gives the best robustness against noise. The
use of pre-filtering increases the complexity of the detector and
does not produce better results. The ANN performs the noise
filtering itself with the proper training strategy.
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TABLE III
CORRECTDETECTIONUSING CLEAN AND NOISY DATA FOR TRAINING

Fig. 6. Performance comparison of three LSP-based classifiers.

C. Improving the Detector Performance Using Post-filtering

A simple post-processing technique to improve detection de-
cisions is to use a moving average based on the time series ob-
servations, , of the memoryless ANN detector.
Let be a random variable which takes the value of one if a
helicopter is present and zero if it is not. We assume that detec-
tion is not exact and the following conditional probabilities are
known:

Let us assume that the output of the post-processor is the random
variable , where indicates that a heli-
copter is present and indicates that the rotor craft is ab-
sent. The objective of the post-processing stage is to bring the
probability of false alarm (POFA) ,
and the probability of missing (POM)
to within prespecified limits.

Let us consider the simple moving average

(12)

The new decision variable is then defined such that
if , and if ; where is a threshold value

.
In this case, the POFA and POM are given by

(13)

Fig. 7. P andP as function ofn andr atp = q = 0:9.

(14)

For a given and , the post-processing design problem is then
equivalent to selecting the integersand such that
and , where and are sufficiently small probabilities,
selected by the decision maker. Fig. 7 shows the and
for and as a function of the threshold, when

. For example, at and a threshold of 0.4, the MA
post-processor would achieve , and ,
while at a threshold of 0.6 it would achieve , and

.
Other techniques can also be employed, e.g., autoregressive

post-processor, or a recurrent ANN detector, however, with sub-
stantially more complex training procedure.

VII. CONCLUSION

In this paper, we have evaluated the performance of ANN-
based helicopter sound detection systems. Different LPC para-
metric modeling techniques were applied for parametric repre-
sentation of helicopter spectrum features. The detection perfor-
mance of these parametric features in the presence of noise is
presented. Reflection coefficients are simple to calculate and
require minimum ANN training time. On the other hand, LSP
give the best robustness performance in the presence of noise,
but require complex front end computation and show slow ANN
training. The paper showed also that the performance of the
ANN detectors can be improved if the wavelet transform is ap-
plied for de-noising the signal prior to the feature extraction
stage, or if the detection system is trained using a combination
of clean as well as noisy signals.
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