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ABSTRACT

This paper presents a three-day workweek scheduling problem with four types of days-off schedul-
ing constraints: (1) out of the four off days given to each employee per week, at least two must be
consecutive, (2) two alternative types of constraints are imposed to ensure that employees get a suf-
ficient proportion of weekends off, (3) the maximum work stretch is four consecutive workdays for
each employee, and (4) the maximum number of successive weeks with weekend work is specified.
A mathematical model of this problem is formulated and efficiently solved by introducing a bound
on workforce size. First, the problem structure is used to determine the minimum workforce size.
Subsequently, a workforce-size constraint is added to the integer programming model in order to
facilitate solution. Finally, multiple-week rotation schedules are produced to satisfy all constraints
and limit or minimize the number of successive weeks with weekend work.

Keywords: Employee scheduling, compressed workweek, integer programming

INTRODUCTION

Employee scheduling is an important and complex practical problem. This problem is especially
significant for facilities that operate continuously, either 24 hours a day, or seven days a week,
such as hospitals, restaurants, and train stations. If the organizations operate seven days a week,
then different employees must be given different days-off, some of which do not necessarily cor-
respond to the weekend. The problem in this case is called days-off scheduling, and its objective
is to find the minimum size or cost of the workforce to satisfy the labor requirements for every
day of the week.

In days-off scheduling literature, the (x, y) notation denotes the problem of assigning each
employee x workdays out of a total period of y days. Initially, most of days-off scheduling litera-
ture was directed towards the (5, 7) problem, or the traditional 8-hour-per-day, 5-workday-per
week schedule. Recently, there has been a worldwide trend towards compressed and flexible
work schedules. This trend comes as a result of changing social values, demographic trends, and
economic factors (McCampbell, 1996). McCampbell (1996) reports a phenomenal growth of
alternative work schedules in the U.S, and provides a list of alternative work schedules sug-
gested by the U.S. Office of Personnel Management. This list includes three compressed-sched-
ule modules: the 3-day workweek, the 4-day workweek, and'the 5-4/9 plan.

Numerous variations of the employee days-off scheduling problem have been considered, and
several approaches have been proposed for classifying these variations. Narasimhan (2000) lists
6 factors that define the problem structure: (1) number of shifts, (2) number of employee catego-
ries, (3) pattern of labor demand, (4) existence of limits on the length of work stretches, (5)
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existence of requirements for weekend off frequency, and (6) number of workdays per week. To
this list, we propose adding a seventh factor, which is the existence of requirements for consecu-
tive work/off days.

The days-off scheduling problem considered in this paper involves a three-day workweek, or
a (3, 7) problem. It is a practical problem focusing on an actual compressed work schedule sug-
gested by the U.S. Office of Personnel Management. In terms of the 7-factor classification intro-
duced above, the problem at hand is characterized by: (1) a single shift per day, (2) a single
employee category, (3) a general pattern of labor demand, (4) a limit of 4 days on the length of
work stretches, (5) two alternative requirements for weekend off frequency, (6) three workdays
per week, and (7) at least two of the four off days must be consecutive.

Two types of weekend-off frequency constraints are considered in order to ensure that
employees get a sufficient amount of weekend rest: (i) each employee must get a minimum pro-
portion of full weekends off, or (ii) each employee must get a minimum proportion of weekend
days off. An integer programming (IP) model will be formulated to represent the weekend-off
frequency and work stretch length constraints. An efficient optimization algorithm will be
developed to solve this model in order to minimize the number and cost of the workforce.

The algorithm starts by utilizing the problem structure to determine the minimum workforce
size. This workforce size bound is then used in a workforce-size constraint, which is added to
the IP formulation of the problem to make it possible to efficiently obtain optimum solutions.
Finally, multiple-week rotation schedules are constructed to guarantee that work patterns in each
week fit the work patterns in the following week while satisfying all the constraints. The compu-
tational efficiency of the new method is compared to direct integer programming solution.

Subsequent sections are organized as follows. First, a review of relevant literature is given.
Then, the assumptions and the integer programming model of the given days-off scheduling
problem are presented. Subsequently, the procedures for determining the minimum workforce
size and assigning workers to days-off shifts are described. Next, computational comparisons
are presented. Finally, a numerical example is solved and conclusions are given.

REVIEW OF RELATED RESEARCH

A recent review of employee scheduling literature is provided by Ernst et al. (2004). The focus
here is on recent employee day-off scheduling models and algorithms, especially for com-
pressed and flexible work schedules. Earlier approaches to compressed workweek scheduling
are covered by Hung (1995), who surveys their applications for a police workforce.

Narasimhan (1997) considers days-off scheduling for a hierarchical workforce, assuming the
following for each employee: (i) two days off per week, (ii) at least A out of B weekends off, and
(iii) no more than 5 consecutive working days. Narasimhan (1997) aims to minimize the work-
force cost, given that d, category k workers are required on weekdays, and n, workers on week-
ends. Billionnet (1999) uses integer programming to formulate and efficiently solve a
hierarchical workforce scheduling problem under variable labor demand. The workweek length
can be 3, 4, or 5 days, and the objective is to minimize the workforce cost.

Burns et al. (1998) present an algorithm for 3-day and 4-day workweeks, with variable daily
demand and limits on work stretch lengths. Burns and Narasimhan (1999) present a multiple-
shift algorithm for 3-day and 4-day workweek scheduling of a homogeneous workforce. The
demand has two levels (D on weekdays and E on weekends, D 2 E), and constraints are
imposed on weekend work frequency, work stretch length, and shift transition times. Narasim-
han (2000) considers the same problem but for a hierarchical workforce consisting of several
employee categories.

Lankford (1998) describes an actual pilot implementation of a compressed workweek sched-
ule, consisting of four ten-hour work days (4 x 10) at the Analytical Central Call Management
(CCM) group at Hewlett Packard. After careful evaluation, he found that the key to successful
implementation of this schedule is cross-training. Alfares (2003) develops optimum solutions
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for compressed workweek scheduling in which workers are given three or four consecutive
workdays per week. The labor demand is assumed to have two different levels: D for weekdays
and E for weekends.

Bard et al. (2003) use large-scale integer programming to formulate and solve a tour schedul-
ing problem to minimize labor cost at the United States Postal Service. Azmat and Widmer
(2004) develop a three-step procedure to assign days-off schedules to a minimum workforce
using annualized hours. Jarray (2005) presents a three-step polynomial-time algorithm to allo-
cate days-off to employees such that each employee gets two or three consecutive days off per
week. Hung (2005) calculates cost savings obtained by 4-day and 3-day workweeks, provides
formulae for calculating workforce sizes, and presents methods to construct days-off schedules.

Hung (1993) presents a multiple-shift algorithm for 3-day workweek scheduling, assuming:
(i) D workers are required on weekdays and E workers on weekends, and (ii) each worker must
receive at least A out of B weekends off, and (iii) cost is equal for all workdays/patterns. Alfares
(2000) develops a single-shift manual optimization method for 3-day workweek scheduling,
assuming: (i) varying labor demands for each day of the week, (ii) unequal costs for different
work patterns, and (iii) consecutive work days. This paper presents a novel solution algorithm to
a new 3-day workweek scheduling problem. The assumptions of this new problem are presented
in the following section.

PROBLEM ASSUMPTIONS AND FORMULATION

Assumptions
The optimization algorithm presented in this paper applies to single-shift three-day workweek
scheduling under the following assumptions:

(1) each employee is assigned 3 workdays and 4 off-days per week,

(2) at least 2 of the 4 weekly off-days must be consecutive,

(3) the maximum work stretch is 4 consecutive workdays, and

(4) two alternative weekend work frequency constraints are required:
(I) a minimum proportion of full weekends off, or
(II) a minimum proportion of weekend days off.

(5) the maximum number of successive weeks with weekend work is specified,

(6) the objective is to minimize the total cost of the workforce,

(7) the demand for employees may vary from day to day for the given week, but is constant for
similar days of different weeks,

(8) arotation schedule is used to ensure fairness among employees,

(9) the scheduling period is equal to the length of the rotation cycle, which is an integer num-
ber of weeks to be determined by the algorithm,

(10) weekend work is paid at overtime rate, thus the weekly cost of each days-off pattern

depends on the number of weekend workdays it contains.

The Integer Programming Model
The integer programming model of the three-day scheduling problem at hand, with type I week-
end work frequency constraints (minimum proportion P of full weekends off), is shown below.

35
Minimize Z = Z Cjx; 1)
j=1

Subject to
35
Z“U"I'Z"' i=12,..7 2
Jj=1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



178 H.K. ALFARES

Tt > p 3
Zj:l xj
X1 S MQ| (43)
x1 2 Q) (4b)
> x5 <MQ (5a)
Jj€E
ij > (5b)
jEE
1
03 < E(Qi +02) (6)
B>201+0—1 )
35
Y= x5-xn>0 ®
j=1 J€E
X4 S MQy (9a)
X4 2 Qs (9b)
> x < MQs (10a)
i€l
> x5 >0s (10b)
i€io
1
Qs < §(Q4+Q5) (11)
Qs> Qa+Qs—1 (12)
35
Y%= % x>0 (13)
j=| jG.l()
xj > 0 and integer, j=12,...,35 (14)
Q,=0orl, u=12,...,6 (15)

where

W = workforce size, i.e., total number of employees assigned to all patterns
x; = number of employees assigned to weekly days-off work pattern j
Q. =binary logical variables used to represent work stretch constraints
a; =1 if day i is a work day for pattern j, a; = 0 otherwise (i = 1,2,...,7).
i=1,...,5 correspond to weekdays, i = 6,7 correspond to the weekend.
i = 8 corresponds to weekend-off frequency constraint (3).
Table 1 shows matrix A = {a;,i =1,...,8, j = 1,...,35}
c;j = weekly cost of days-off pattern j shown in Table I, assuming daily pay for regular
workdays = 1, and daily pay for weekends = 1+ (B > 0)
r; = minimum number of employees required on day i, i = 1,2,...,7, rs =0
P = average proportion of full weekends off, 0< P <1
M =a large number, M > W
E = set of days-off patterns in which both days 1 and 2 are workdays,E = {3,4,9,18,23,33}
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Ji = set of days-off patterns with k weekend days off per week, k =0,1,2
Jo ={1,2,14,16,28,31}

J1 =1{3,7,8,9,10,13,15,17,20,21,22, 24, 25,27, 30,32, 34,35}

J, =1{4,5,6,11,12,18,19,23,26,29,33}

The aim of the objective function (1) is to minimize the total cost of employees. Constraints
(2) ensure that the all daily demands are satisfied by assigning at least the required number of
employees on any given day i. Weekend work frequency constraint (3) guarantees that the total
schedule contains a minimum proportion P of full weekends off. For Alternative I, constraint
(3) can be expressed as follows:

—PY x;—PY x+(1-P)) x>0

Jj€ho JEN Jj€h

Thus .
agg = —P ifjedoorjed,
=1-2P ifje), .

Work stretch constraints, which ensure that no more than 4 successive workdays are assigned
as work patterns are linked from one week to the next, come in two sets: (4)~(8) and (9)-(13).
Set (4)—(8) ensures that work pattern 1, which has 3 consecutive workdays at the end of a given
week, is not immediately followed by any work pattern of the set E, in which both days 1 and
2 are workdays. Thus, if both pattern 1 and some pattern(s) belonging to set E are assigned,
then at least one of the remaining patterns must be also assigned to be scheduled in between
during the weekly rotation.

Constraints (4a) and (4b) guarantee that Q) = 0 if x; =0 and Q) = 1 if x; > 1. Likewise,
constraint pair (5a) and (5b) guarantee that @, = O if all x; (j € E) = 0 and Q; = 1 if
some x; (j € E) > 1. Constraints (6) and (7) represent the logical relationship Q3 = 00>,
ensuring that Q3 = 1 if O, and @, are both equal to 1, otherwise Q3 = 0. The value of Qs,
the right-hand side of constraint (8), will be fixed only by (4)—(7).

Similarly, (9)—(13) ensure that any work pattern of the set Jp, in which both days 6 and 7 are
workdays, is not immediately followed by work pattern 4, which has 3 consecutive workdays
at the start of a given week. Thus, if both pattern 4 and some pattern(s) belonging to set J, are
assigned, then some of the remaining patterns must be also assigned to act as a buffer. The
purpose of (4)—(8) and (9)-(13) will become clearer in light of the subsequent description of
the rotation algorithm. Although constraints on the number of successive weeks with weekend
work are not explicitly expressed in the IP model, they are implemented directly in the rotation
algorithm.

THE SOLUTION ALGORITHM

Minimum Workforce Size
In order to minimize the workforce size W, we temporarily replace the objective function (1)

by:
y 35

Minimize W = ij (16)

j=1
The minimum workforce size W = Zfi, x; is determined by searching through the feasible
region defined by all the constraints (2)—(15). However, the presence of the binary variables
Q1,...,Qs in constraints (4)-(13) makes it difficult to directly analyze their effect on the work-
force size. Therefore, for the sake of facilitating the analysis, these constraints are temporarily
replaced (only at this stage of the algorithm) by the following simplified combination of (8)

and (13):
dox=1 a7)

jeF
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where

F = set of all days-off patterns excluding sets E and Jy, i.e.,
F={5,6,78 10,11, 12, 13, 15, 17, 19, 20, 21, 22, 24, 25, 26, 27, 29, 30, 32, 34, 35}

It must be noted that although constraint (17) is simpler than the set of constraints (4)—-(13), it
is actually stronger because it makes the assignment to a buffer days-off pattern unconditional.
Constraint (17) simply guarantees that at least one days-off pattern from the set F is always
available to act as a buffer, regardless of the values of patterns 1 and 4 and patterns from sets
E and Jo.

In order to determine the minimum workforce size W, the dual solution and primal-dual
relationships are used to determine the lower bounds on W. First, all cyclically distinct subsets
of the dual variables are enumerated by the Alfares and Selim (2002) cyclic selection algorithm,
in order to identify the dominant dual solutions. Subsequently, primal-dual complementary
slackness relationships are used to find the corresponding primal solutions. For the days-off
scheduling problem at hand, four dominant dual solutions are identified, leading to the following
lower bounds on the workforce size:

1. First, the workforce size must be greater than the labor demand on any given day; thus:
W>r, i=12,...,7 (18)

Since constraint (17) leads to the trivial bound (W > 1), it is dominated by (18). Thus, (17),
and subsequently (4)—(13), do not affect the workforce size W as long as all daily labor
demands are strictly positive, i.e., r; > 1, fori=1,...,7.

2. Second, since each employee is assigned 3 workdays per week, the total man-days assign-
ment is 3" x; = 3W. This must be greater than the total man-days requirement, which is
3 ri. Thus, 3W > > r;, or

7
1
> - .
w> 3 ,E:, r; (19)

3. For the third bound, we must define seven sets of three daily demands (r;, ri42, ri44), Whose
subscripts, denoted by s;, are shown in Table 2. Each set s; = {i,i +2,i+4},i=1,...,7,
is a circular set which has a cycle of 7. Referring to matrix A in Table 1, each x; variable
has at most two non-zero coefficients in set s; rows {i,i +2, i +4} forany i = 1,...,7.
Therefore, the sum of rows {i, i +2, i +4} in constraints (2) gives:

22%2’i+'i+2+n+4, i=12..,7
W2>(ri+rin+ra)/2, i=12,..,7
or

Li=1,2,...,7 20)

[ Pox |

W >

[\

4. The fourth bound is derived by combining weekend staffing demands with the required

frequency of weekends off. Starting with Saturday (day 6), adding rows 6 and 8(I) of Table

1 produces: (1 — P)W > rg, or W > r¢ /(1 — P). Using the same procedure for Sunday (day

7) and adding rows 7 and 8(I) of Table 1, we obtain: W > r; /(l — P). Combining the two

results in order to satisfy work and off demands in the weekend (both days 6 and 7), we
obtain:

W > max(re, r7)

> = @
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Table 2: Sets of subscripts s;
defined by equation (22)

...
il

NNV AW —
NN —=WND -
SO SENSRW

NANANNOW

The minimum workforce size W is obtained from the maximum value of the four above
bounds (18)—(21), rounded up to the nearest integer, as follows:

7

_ 1 Tonax max(re, r7) ‘
W = max { ’max., I-giX:I:ri]’ [ 2 .l’ I- 1 . P ] (22)
where
Fmax =Max {r,ra,...,r}
Tmax =max {T|, Tz, vees T7}
[a] =smallest integer > a,
and
T,-=er=r,~+r,'+2+r,»44, i=12,...,7 (23)
JESi

s; is circular set with a cycle = 7 (see Table 2)

Equation (22) is comparable to formulas for the minimum workforce size developed by
numerous authors such as Emmons and Burns (1991), Hung (1991), Burns and Narasimhan
(1999), Burns et al. (1998), and Narasimhan (1997, 2000). The details of these formulas vary
according to the given problem contexts. However, their general form is similar to (22), and
they are developed using similar approaches. All of these formulas are based on finding the
lower limits on workforce size to satisfy different subsets of constraints. Since the maximum
of these bounds satisfies all applicable constraints, it is the minimum feasible workforce size.

Days-Off Assignments

Having determined the number of employees W by (22), we need to allocate them among
the different days-off patterns in order to satisfy the daily labor demands at minimum cost.
Reverting from (16) to the original objective function (1), the right-hand side of the dual
constraints changes from 17 to {c|,...,c35}". Naturally, the values of the basic dual variables,
as well as the slacks of the dual constraints, do slightly change. However, no change affects
which dual variables are basic/nonbasic, or which dual constraints are equations/inequalities.
Thus, according to primal-dual relations, no change affects the four bounds (18)—(21) on
workforce size W. Therefore, using the differential cost vector (cy,...,c3s) with any B > 0,
the minimum labor cost is obtained with the minimum- workforce size. In order to efficiently
find the optimum days-off assignments x,. .., x3s, the following constraint is appended to the
integer programming model defined by (1)-(15).

35
dox=w (24)
j=1
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Multiple-Week Rotation

The constraints included in the model specify that each employee must receive: (i) a proportion
P of weekends off, (ii) at least two successive days off per week, and (iii) no more than four
consecutive workdays. A multiple-week rotation scheme is needed to ensure that all these
constraints are satisfied as employees switch from one days-off pattern to another in successive
weeks. A rotation scheme is presented below, which is based on the value of workforce size W
obtained by (22) and the values of days-off assignments x,...,x3s obtained by the optimum
IP solution.

The rotation scheme has a rotation cycle with a length of W weeks. During this cycle, each
employee is assigned to each days-off pattern j for a period of x; weeks (j = 1,...,35). To
obtain a fair schedule, each employee is assigned to the same cyclic sequence of days-off
patterns. Specifically, employee k starts the sequence at week k of the W-week rotation cycle
(k = 1,...,W). In order to satisfy work stretch constraints, assignments to pattern 1 cannot
be followed by patterns belonging to set E, and assignments to patterns belonging to set Jg
cannot be followed by pattern 4.

The rotation algorithm is used to restrict or minimize the length of the weekend work stretch.
If the maximum number of consecutive weeks that involves weekend work is given as L, then
days-off work patterns in successive weeks must be sequenced in such an order that avoids
weekend work stretches longer than L. Specifically, any sequence of assignments to Jo and
Ji patterns cannot exceed L successive weeks, and then it must be followed by at least a
one-week assignment to a J, pattern. To guarantee feasibility, a pre-specified limit on weekend
work stretch must satisfy L > [(1 — P)/P]. However, since the actual proportion of J, patterns
in the final solution can be greater than P, the minimum value of L is given by:

Djen i+ jen xj]

L=]
Zjeh Xj

(25)

HALF-WEEKEND-OFF FREQUENCY CONSTRAINTS

In the preceding analysis, a minimum proportion P of full weekends off was required for
each employee. In several situations, however, weekend-off requirements may include half-
weekends. Cezik et al. (2001), for example, require that at least one of the off days in any
week must be on the weekend. If we modify the weekend-off frequency constraints to specify
a proportion P of weekend days off (both half weekends off and full weekends off), then the
model changes as follows.

First, constraint (3) must be replaced by the following constraint.

Zje], Xj +2 ZjEJz Xj

>P (26)
2 2,321 Xj
or
—2P) xj+(1=2P)) x+(2—2P)) x>0 (26)
Jj€Jo JEN j€h

For weekend-off frequency constraints alternative I, the coefficients ag; of row 8(II) in Table

1 become applicable: s
a8j = -2P lfj € Jo,

=1-2P ifjeu,

=2-2P ifj € J,
The numerator of (26) represents the number of weekend man-days assigned off, while the
denominator represents the total number of possible weekend man-days. In order to determine
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the minimum workforce size W, the first three bounds of (17)—(19) are still applicable. However,
in order to satisfy work and off demands on days 6 and 7, we now use row 8(II) instead of
row 8(I) in Table 1. Consequently, the bound expressed by (21) changes to:

re+rqy
>
w2 2-2P

27N

Therefore, (22) is replaced by the following expression for the minimum workforce size W.

7
_ 1 Tmax re+nry
W = max rmax,[:;;r,],[ > 1, [Z—ZP]} (28)
The solution algorithm for alternative II weekend-off frequency constraints involves the fol-
lowing steps. First, the workforce size W is calculated by (28). Next, constraint (24) is added to
the IP model defined by (1)~(2), (4)-(15), and (26). Finally, the same rotation scheme described
for weekend-off constraints alternative I, is similarly used to schedule the W employees.

COMPUTATIONAL EXPERIMENTS

Extensive computational experiments have been carried out to test the computational efficiency
of the proposed algorithm. The proposed method, i.e., IP model (1)—~(15) plus workforce-size
constraint (24), was compared to the traditional IP solution, i.e., IP model (1)(15) without (24).
The comparisons have shown that the addition of (24) significantly reduces the computation
time. In order to evaluate the impact on computational efficiency, 252 test problems were
solved, with and without constraint (24). In all these problems, the value of § was set to 0.5 to
indicate 50% higher pay for weekend work. Moreover, the value of P was set to 0.5 to indicate a
requirement of every other weekend off. Both of these are typical values used in real life and in
several research papers.

The 252 test problems are divided into 12 sets with different demand types, but all have an
average demand of 50 employees per day. The first six sets involve 17 problems each, with a
demand range of 34 to 64. Sets 1-6 have different specific labor demand patterns: level, trend,
concave, convex, unimodal, and sinusoidal. These six sets were originally developed by Brusco
and Jacobs (1993) for tour scheduling, but were adapted to the days-off problem. The last six
sets involve 25 problems each. Sets 7-10 have randomly distributed labor demands over the
intervals: [34, 66], [0, 100], [20, 801, and [45, 55], respectively. Sets 11-12 involve two constant
levels of labor demand: workdays demand (r, = r, ... = rs = D) which is fixed at 50, and week-
ends demand (7, = r; = E). Set 11 has E = 25, ..., 49, while set 12 has E =51, ..., 75.

Microsoft Excel Solver®, on a 450-MHz Pentium III PC, was used to solve the 252 test prob-
lems by integer programming. The default Solver options were used (Max Time = 100, Iterations
= 100, Precision = 0.000001, Tolerance = 5%, Convergence = 0.001). The results of computa-
tional experiments using weekend-off constraints alternative I (full weekends off) are summa-
rized in Table 3. Without constraint (24), 135 problems (54%) could not be solved within the 100-
second time limit. For these problems, the solution time was simply assumed to be 100 seconds.

Even though the solution time without constraint (24) were underestimated for 54% of the
problems, the advantages of adding constraint (24) are extraordinary. Including constraint (24)
has decreased the mean, maximum, and variance of solution times for all 12 problem sets. Over-,

- all, average solution time dropped by 120 times, from 55.02 seconds to 0.46 seconds. Maximum
solution time fell from more than 100 seconds to only 1.65 seconds, while the standard deviation
decreased from 49.43 seconds to only 0.22 seconds.

Table 4 summarizes results of the experiments with weekend-off constraints alternative II
using the same 252 test problems. Without constraint (24), 154 problems (61%) could not be
solved within the 100-second time limit. Again, the solution times for these problems were
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assumed to be 100 seconds. Overall, average solution time dropped by 200 times, from 61.67
seconds to 0.30 seconds. Maximum solution time dropped from more than 100 seconds to only
0.63 seconds, while the standard deviation decreased from 48.46 seconds to only 0.05 seconds.
Clearly, adding constraint (24) has proved to be essential for efficient solution. Constraint (24)
produces this remarkable improvement in computation time by acting as a very efficient cut, sig-
nificantly reducing the feasible region (search space) and accordingly decreasing the solution
time.

CONCLUSIONS

An efficient optimization algorithm has been developed for three-day workweek employee
days-off scheduling with several realistic constraints. Employees are given four off days per
week, out of which at least two days must be consecutive. Moreover, employees cannot be
assigned to a work stretch of more than four consecutive workdays. Two alternative types of
constraints on weekend work frequency are imposed: employees must be given either a certain
proportion of full weekends off, or a certain proportion of weekend days off. Finally, the maxi-
mum weekend work stretch can be specified or minimized. An integer programming model has
been formulated, and a simple expression has been derived to determine the minimum work-
force size for each alternative. A feasible rotation scheme has been constructed for assigning
employees to work patterns over several weeks.

In order to improve the computational efficiency, workforce-size constraint (24) is appended
to the integer programming model. Extensive computational experiments with 252 test problems
have shown that including this constraint is essential for efficient solution. Without this con-
straint, more than 57% of the problems could not be solved by Excel Solver with default set-
tings. The addition of constraint (24) has made it possible to solve all test problems. Moreover,
appending this constraint has increased the average solution speed by at least 150 times.
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APPENDIX. A SOLVED EXAMPLE

Given that P (proportion of full weekends off) is 0.5, L (maximum weekend work stretch) is 2 weeks, and
the following daily labor demands for a typical work week:

Py 17=2,6,2,7,2,6,2

Minimum workforce size
Using (23), we obtain:

T Ty ... T, =6, 19,6, 15, 10, 10, 15

The arguments of (22) are calculated as follows:

rmax = 7
2ri3 =273 =9
Toa/2 =Ty2 =192 =95
max(rg, r7)/(1 - P) =6/05 =12

Using (22), we obtain:
W=max{7,9,[9.5] 12} = 12

Days-off assignments

To the IP model defined by (1)—(15), we add the workforce-size constraint defined by (24): 2‘,/33, x =12
Next, we use integer programming to obtain the days-off assignments x|, ..., x35. The optimal integer pro-
gramming solution obtained by Excel Solver is given by:

Jy and J, patterns: n=2,x=3x=1
J, (full weekend off) patterns: x5=3x;=1x9=2

Multiple-week rotation

A 12-week rotation cycle must be used, during which each employee is assigned 2 weeks to pattern 1, 3
weeks to pattern 7, 1 week to pattern 9, and so on. We need to ensure that no more than 4 successive work-
days are assigned as work patterns are linked from one week to the next during the rotation cycle. There-
fore, pattern 1 assignments cannot be immediately followed by pattern 9 which belongs to set E. Using
(25), the minimum value of L (maximum weekend work stretch) is: L =[6/6] = | week. A 12-week feasi-
ble rotation cycle, using the given value of L = 2 weeks, is shown in Figure 1.
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Figure 1: A cyclic 12-week rotation schedule for the solved example, where shaded cells
represent an assignment to a J, (full-weekend off pattern).

Week | 1 [2 |34 ([5]6[7[8]9]10][11]12
Employee

1 1 {1 [S]s5{7|7F8%118 7] 9
2 941 (115151717 kEE 719
3 i1 1548177 719 |
4 9 |19]19] 1 |1 FHE8 7|7 7
5 7 {9 F19]19)1 |1 7] 7
6 719019119011 E 7|7
7 $1 7 (9191 1|1 {77
8 110 7 | 9 FERES] 1 7
9 -5 111] 7 | 9 FI¥ 1
10 715411179 [ 1|1
11 17171578179 E 1
12 85177 [8F83] 71|09 ‘
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