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ABSTRACT 
In this paper we consider a three-day workweek scheduling problem with three realistic days-
off scheduling constraints: (1) at least two off days per week must be consecutive, (2), 
employees must get a given proportion of weekends off, and (3) the number of consecutive 
workdays in any work stretch cannot exceed four. An integer programming model is 
formulated and efficiently solved by an algorithm that involves three stages: (1) determining 
the minimum workforce size by primal-dual relations, (2) adding a workforce-size constraint 
to the integer programming model to expedite its solution, and (3) constructing fair and 
feasible multiple-week rotation schedules. 
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1. INTRODUCTION 
Workforce scheduling is especially significant for facilities that operate continuously, such as 
hospitals, restaurants, and train stations. If the organization operates seven days a week, then 
different employees must be assigned different days-off, some of which do not necessarily 
correspond to the weekend. The problem in this case is called the days-off scheduling, and its 
objective is to find the minimum size or cost of the workforce to satisfy the daily labour 
demand for every day of the week. 

Most of the earlier days-off scheduling literature was directed towards the (5,7) problem, 
or the traditional 5 workdays per week. Recently, there has been much emphasis on 
compressed and flexible work schedules. McCampbell (1996) describes the phenomenal 
growth of alternative work schedules in the U.S. and lists alternative work schedules 
suggested by the U.S. Office of Personnel Management. This list includes three compressed-
schedule modules: the 3-day workweek, the 4-day workweek, and the 5-4/9 plan. 

The days-off scheduling problem considered in this paper involves a three-day workweek. 
Three types of days-off constraints are imposed: (1) the maximum length of any work stretch 
cannot exceed four days, (2) at least two of the four off days per week must be consecutive, 
and (3) each employee must get a minimum proportion of full weekends off. An integer 
programming (IP) model will be formulated to represent the three types of constraints, and a 
three-stage algorithm will be developed to minimize the number or cost of the workforce.  

In the first stage of the algorithm, the primal-dual relationships are used to determine the 
minimum workforce size. In the second stage, a workforce-size constraint is appended to the 
IP model to efficiently obtain optimum integer solutions. Finally, multiple-week rotation 
schedules will be constructed to guarantee that work patterns assigned to each employee in 
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successive weeks satisfy all the constraints. The computational efficiency of the new method 
will be compared to existing integer programming models.  

The rest of this paper is organized as follows. First, a review of relevant literature is given. 
Then, the integer programming model of the problem is presented. Next, the solution algorithm 
is described. Finally, computational comparisons are presented and conclusions are given. 

2. LITERATURE SURVEY 
This literature survey is concerned with recent compressed workweek scheduling, especially 
the three-day workweek problem. Ernst et al. (2004) provide the most comprehensive and 
recent survey of personnel scheduling algorithms. Hung (1991) analyses two compressed 
workweek scheduling models assuming that each employee must receive at least A out of B 
weekends off. Hung (1993) develops similar multiple-shift models for 3-day workweeks, 
whose objective is to minimize the workforce size. Under the same assumptions, Narasimhan 
(1997) considers days-off scheduling for a hierarchical workforce, where each employee 
cannot be assigned more than 5 consecutive working days. 

Hung (1994) develops an algorithm for hierarchical workforce scheduling under variable 
labour demand and employee substitution, assuming the number of workdays per week can be 
3, 4, or 5 days. Billionnet (1999) uses integer programming to formulate and efficiently solve 
the same problem. Burns and Narasimhan (1999) present a multiple-shift algorithm for 3-day 
and 4-day workweek scheduling of a homogeneous workforce. Constraints are imposed on 
weekend work frequency, work stretch length, and transition time when changing shifts. 
Narasimhan (2000) considers the same problem but for a hierarchical workforce consisting of 
several employee categories.  

Burns et al. (1998) present an algorithm for 3-day and 4-day workweeks, with variable 
daily demand and limits on work stretch lengths. Lankford (1998) describes an actual pilot 
implementation of 4-day workweek schedule at the he Analytical Central Call Management 
(CCM) group at Hewlett Packard. Bard et al. (2003) present a model for employee tour 
scheduling at the US Postal Service, which can handle different days off policies, variable 
start times, and the use of part-time flexible workers. Alfares (2003a) presents an optimal 
algorithm for four-day workweek scheduling with weekend work frequency constraints. 
Alfares (2003b) provides manual optimal solutions for the 3-day and the 4-day workweek 
scheduling problems, assuming two levels of labour demands and consecutive workdays. 

The algorithm presented in this paper produces an optimal solution to single-shift three-
day workweek scheduling problem under the following assumptions: 
(i) the demand for employees may vary from day to day for the given week,  
(ii) each employee is assigned 3 workdays and 4 off-days per week,  
(iii) at least 2 of the 4 weekly off-days must be consecutive,  
(iv) the maximum work stretch is 4 consecutive workdays, and  
(v)  each employee takes on average a proportion P of full 
weekends off. 

3. INTEGER PROGRAMMING FORMULATION 
The three-day workweek scheduling problem described above can be represented by the 
following integer linear programming model: 

 
 Minimize W = ∑ =

35

1j jx     (1) 

 
 subject to 
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xj  ≥  0   and integer,   j = 1, 2, ..., 35   (14) 
Qj  =  0 or 1,   j = 1, 2, ..., 6   (15) 

where 
 W =  workforce size, i.e., total number of employees assigned to all patterns 
 xj = number of employees assigned to weekly days-off work pattern j 
 aij = 1 if day i is a work day for pattern j,  
 aij = 0 otherwise (i = 1, 2, ..., 7) 
 a8j = – P  if j∈J0 or j∈J1,  
 a8j = 1 – P  if j∈J2,  
 
Table 1 shows matrix A = { aij, i = 1, ..., 8,  j = 1, ..., 35} 
 ri =  minimum number of employees required on day i,  i = 1, 2, ..., 7, r8 =  0 
 P = average proportion of full weekends off, 0 ≤ P ≤ 1  
 M = any large number, M ≥ W 
 E = set of days-off patterns in which both days 1 and 2 are workdays,  
 E = {3, 4, 9, 18, 23, 33} 
 Jk = set of days-off patterns with k weekend days off per week, k = 0, 1, 2 
 J0 = {1, 2, 14, 16, 28, 31} 
 J1 = {3, 7, 8, 9, 10, 13, 15, 17, 20, 21, 22, 24, 25, 27, 30, 32, 34, 35} 
 J2 = {4, 5, 6, 11, 12, 18, 19, 23, 26, 29, 33} 

The objective (1) is to minimize the workforce size. Constraints (2) ensure that the number 
of employees assigned for the given day i are at least equal to the total number of employees 
required for that day. The denominator on the left-hand side of (3) represents the total number 
of employees assigned for the given weekly schedule, while the numerator represents the 
number of employees with full weekends off.  

Constraint sets (4)-(8) and (9)-(13) ensure that no more than 4 successive workdays are 
assigned as work patterns are linked from one week to the next during the rotation cycle. 
Constraints (4)-(8) ensure that work pattern 1, characterized by 3 consecutive workdays at the 
end of a given week, is not immediately followed by any work pattern of the set E, in which 
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both days 1 and 2 are workdays. Similarly, constraints (9)-(13) ensure that any work pattern 
of the set J0, in which both days 6 and 7 are workdays, is not immediately followed by work 
pattern 4, which has 3 consecutive workdays at the start of a given week.  
 
Table 1. Days-off matrix A = {aij} and cost vector C = {cj} for the 35 days-off work patterns 

 j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
i                    
1  0 1 1 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1 
2  0 0 1 1 1 0 0 0 1 1 0 1 0 0 0 1 0 1 
3  0 0 0 1 1 1 0 0 0 1 1 0 1 0 0 0 1 0 
4  0 0 0 0 1 1 1 0 0 0 1 1 0 1 0 0 0 1 
5  1 0 0 0 0 1 1 1 0 0 0 1 1 0 1 0 0 0 
6  1 1 0 0 0 0 1 0 1 0 0 0 1 1 1 1 0 0 
7  1 1 1 0 0 0 0 1 0 1 0 0 0 1 0 1 1 0 
8  – P – P – P 1– P 1– P 1– P – P – P – P – P 1– P 1– P – P – P – P – P – P 1– P
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 j 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 
i                   
1  0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 
2  1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 
3  1 1 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 
4  0 1 1 1 0 0 1 1 0 0 1 0 0 1 0 0 1 
5  1 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 0 
6  0 1 0 0 0 1 0 0 1 1 0 1 1 0 0 1 0 
7  0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 1 
8   1 – P – P – P – P 1– P – P – P 1– P – P – P 1– P – P – P – P 1– P – P – P 
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4. SOLUTION ALGORITHM 
An efficient algorithm is developed to solve the problem optimally in three stages. 

4.1.  Determining the Minimum Workforce Size 
Given a week’s daily labour demands, the minimum workforce size W can be determined 
from cyclical enumeration of all dual solutions and using primal-dual relations, without 
integer programming. Depending on the demands r1, ..., r7, there are four dominant dual 
solutions which produce the following lower bounds on the workforce size: 

W  ≥  rmax 
W  ≥  (∑i=1,...,7  ri)/3 

  W  ≥  (ri + ri + 2 + ri + 4)/2,  i = 1, 2, ..., 7 
W  ≥  max(r6, r7)/(1 – P)  

To determine W, we choose the maximum value obtained from the four above bounds, and 
round it up to the nearest integer. Therefore, we obtain the following expression for the 
minimum workforce size W: 
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 where     
  rmax  = max { r1, r2, ..., r7 } 
  Rmax  = max { R1, R2, ..., R7 } 
  ⎡a⎤   = smallest integer ≥ a,  
  Ri = ∑ ∈ iSj ir , i = 1, 2, ..., 7 
  si = { i, i + 2, i + 4 }, i = 1, 2, ..., 7 

where si is circular set with a cycle = 7  (see Table 2) 
 
Table 2. Sets of subscripts si  

i si 
1 1, 3, 5 
2 2, 4, 6 
3 3, 5, 7 
4 1, 4, 6 
5 2, 5, 7 
6 1, 3, 6 
7 2, 4, 7 

 

4.2.  Days-Off Assignments 
After determining the workforce size W by (16), the objective at this stage is to assign the W 
employees to different days-off patterns in order to minimize total cost. Assuming each 
employee is paid 1 unit per regular workday and 1+β units (β ≥ 0) per weekend workday, the 
weekly costs of the 35 days-off patterns {c1, c2,..., c35} are shown in Table 1. Changing the 
objective to that of minimizing total cost, (1) is replaced by: 

  Minimize Z =  ∑ =

35

1j jj xc    (17) 

 where 
 cj = weekly cost of days-off pattern j per employee, shown in Table 1. 

Introducing these costs in the IP model, the workforce size W does not change. This means 
that for the cost structure defined by {c1, c2, ..., c35}, for all β ≥ 0, the minimum cost is always 
obtained with the minimum number of employees. Given r1, ..., r7 , β, and P, the value of the 
minimum workforce size W is first calculated by (16), and then the following constraint is 
added to the primal integer programming model defined by (2)-(15) and (17). 

 ∑ =

35

1j jx  = W           (18) 

 
4.3.  Rotation Schedules 
A rotation scheme is now introduced to ensure that all constraints are satisfied as employees 
switch from one pattern to another over a multiple-week rotation period. The solution of the 
integer programming model specifies the number of employees assigned to each days-off 
pattern (x1, ..., x35) and the total workforce W (x1 + ... + x35) for a single week.  

First, we define a W-week rotation cycle, during which each employee is assigned to each 
pattern j for a period of xj weeks (j = 1, ..., 35). All W employees must go through the same 
sequence of assignments to patterns over this W-week rotation cycle, but employee i starts the 
sequence at the ith week of the cycle. For feasibility, assignments to pattern 1 cannot be 
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followed by patterns belonging to set E, and assignments to J0 patterns cannot be followed by 
pattern 4.  

5. COMPUTATIONAL RESULTS 
In order to evaluate the effect of adding constraint (18), computational experiments were 
carried out using 252 test problems. In all these problems, the value of β was set at 0.5 to 
indicate 50% higher pay for weekend work. Moreover, the value of P was set at 0.5 to 
indicate a requirement of every other weekend off.  

The 252 test problems, partially described by Alfares (1998), are divided into 12 sets with 
different demand types, but all have an average demand of 50 employees per day. The first six 
sets involve 17 problems each, while the last six sets involve 25 problems each. Sets 1-6 have 
a demand range of 34 to 64, and different specific labour demand patterns: level, trend, 
concave, convex, unimodal, and sinusoidal. Sets 7-10 have randomly distributed labour 
demands over the intervals: [34, 66], [0, 100], [20, 80], and [45, 55], respectively. Sets 11-12 
involve two constant levels of labour demand, workdays demand (r1 = r2 …= r5 = D) which is 
fixed at 50, and weekends (r6 = r7 = E). Set 11 has E = 25, …, 49, or E < D, while set 12 has E 
= 51, …, 75 or E > D. 

Microsoft Excel integer programming Solver® with default options setting, was used on a 
450-MHz Pentium III PC to solve the 252 test problems. The results of computational 
experiments are summarized in Table 3. Without constraint (18), 135 problems could not 
even be solved within the 100 second time limit. For these problems, the solution time was 
simply assumed to be 100 seconds.  

Overall, average solution time dropped by 120 times, from 55.02 seconds to 0.46 seconds. 
Maximum solution time fell by 60 times, from 100 seconds to only 1.65 seconds. Similarly, 
the standard deviation decreased from 49.43 seconds to only 0.22 seconds. Clearly, adding 
constraint (18) leads to a remarkable reduction in both the mean and variation of solution times.  
Table 3. Solution times in seconds with and without constraint (18) 
 

Problem  Number  Without constraint (18)* With constraint (18) 
set 0f 

problems 
Min Ave.* Max* Std 

dev* 
> 100 Min Ave. Max Std 

dev 
1 17 0.25 64.41 100 48.54 10 0.26 0.46 1.16 0.25 
2 17 0.28 68.82 100 46.12 11 0.28 0.55 1.43 0.34 
3 17 0.25 63.31 100 48.21 10 0.28 0.45 0.85 0.20 
4 17 0.26 64.90 100 48.99 11 0.27 0.42 0.65 0.13 
5 17 0.26 70.74 100 46.73 12 0.28 0.42 0.90 0.20 
6 17 0.25 64.98 100 48.87 11 0.26 0.50 1.09 0.30 
7 25 0.25 56.13 100 50.52 14 0.26 0.41 0.98 0.23 
8 25 0.25 20.24 100 40.70 5 0.23 0.31 0.47 0.06 
9 25 0.25 32.19 100 47.47 8 0.25 0.32 0.57 0.08 

10 25 0.27 76.12 100 43.37 19 0.26 0.43 0.90 0.19 
11 25 0.27 68.10 100 47.47 17 0.28 0.41 0.94 0.18 
12 25 0.27 31.80 100 46.93 7 0.28 0.45 1.65 0.29 

Overall 252 0.25 55.02 100 49.43 135 0.23 0.46 1.65 0.22 
* Some solution could not be obtained in 100 seconds 

6. CONCLUSIONS 

An optimization algorithm for a compressed workweek days-off scheduling problem with 
weekend work frequency constraints has been developed. In this problem, employees are 
given four off days per week, out of which at least two days must be consecutive. Moreover, 
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employees must be given a certain proportion of weekends off, and cannot be assigned to a 
work stretch of more than four consecutive workdays. An integer programming model has 
been formulated, and an efficient solution algorithm has been developed. The three-stage 
algorithm involves determining the minimum workforce size, assigning employees to days-
off, and developing cyclic multiple-week rotation schedules. 

Based on computational experiments with 252 test problems, the addition of a workforce-
size constraint to the IP model has been found essential for efficient solution. Without this 
constraint, more than 54% of the problems could not be to be solved. The addition of this 
constraint has remarkably reduced solution times and has made it possible to solve all test 
problems. On average, the appended model has been found to be at least 150 times faster than 
the traditional IP model. 
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