Math 001-53, Quiz 3 (Textbook 1.1, 1.2 and 1.3), Term 181, Instructor: Sayed Omar, 24-Oct-18

Serial #: _____ ID _____ NAME ____

Show all necessary steps for full marks.

Question 1: (5 points): Find all points on the x-axis that are 4 units from the point (3,-1).

Solution: Points on *x*-axis: (x,0)

The Distance between (x,0) and (3,-1) is

$$\sqrt{(x-3)^2 + (0+1)^2} = 4$$

$$(x-3)^2+1=16$$

$$(x-3)^2 = 16-1$$

$$(x-3)^2 = 15 \implies x-3 = \pm\sqrt{15} \implies x = 3 \pm \sqrt{15} \implies x = 3 - \sqrt{15} \text{ or } x = 3 + \sqrt{15}$$

Answer: The points are: $(3-\sqrt{15},0)$ and $(3+\sqrt{15},0)$

Question 2: (5 points): If (-2,-3) and (m,n) are the end points of a diameter of the circle

$$x^2 + y^2 - 4x + 6y = 3$$

, then m + n = ? (Show your steps)

Solution:

$$x^{2} - 4x + 4 + y^{2} + 6y + 9 = 3 + 4 + 9$$

$$(x-2)^2 + (y+3)^2 = 16$$

$$C = (2, -3), R = 4$$

Midpoint of any diameter is = (2, -3)

$$(2,-3) = \left(\frac{-2+m}{2}, \frac{-3+n}{2}\right)$$

$$\frac{-2+m}{2} = 2$$
 and $\frac{-3+n}{2} = -3$

$$-2 + m = 4$$
 and $-3 + n = -6$

$$m = 6$$
 and $n = -3$

$$m + n = 6 + (-3) = 3$$

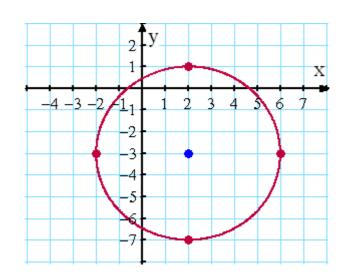
Math 001- 53, Quiz 3 (Textbook 1.1, 1.2 and 1.3), Term 181, Instructor: Sayed Omar, 24-Oct-18

Question 3: (5 points): Given the equation of circle $\frac{1}{2}x^2 + \frac{1}{2}y^2 - 2x + 3y = \frac{3}{2}$. Find the following

- (a): center = ?
- (b): radius = ?
- (c): Domain = ?
- (d): Range = ?
- (e): Sketch the graph

Solution:

$$\frac{1}{2}x^2 + \frac{1}{2}y^2 - 2x + 3y = \frac{3}{2}$$


$$x^2 + y^2 - 4x + 6y = 3$$

$$x^{2}-4x+4+y^{2}+6y+9=3+4+9$$

$$(x-2)^2 + (y+3)^2 = 16$$

$$C = (2, -3), R = 4$$

- (a): center = (2, -3)
- (b): radius = 4
- (c): Domain = [-2, 6]
- (d): Range = [-7,1]
- (e): Graph:

Question 4: (5 points): Find the x and y intercepts of the line that passes through the point (1,3) and perpendicular to the line 3x + 4y = -24

Solution:

$$3x + 4y = -24 \implies 4y = -3x - 24 \implies m_1 = \frac{-3}{4} \implies \boxed{m_2 = \frac{4}{3}}$$

$$y - y_1 = m(x - x_1) \implies y - 3 = \frac{4}{3}(x - 1) \implies y = \frac{4}{3}x - \frac{4}{3} + 3 \implies y = \frac{4}{3}x + \frac{5}{3}$$

y-intercept is:
$$y = \frac{5}{3}$$
 or $\left(0, \frac{5}{3}\right)$

x-intercept is:
$$x = -\frac{5}{4}$$
 or $\left(-\frac{5}{4}, 0\right)$