King Fahd University of Petroleum and Minerals

Prep-Year Math Program

Math 001- Class Test II
Textbook Sections: 1.1 to 2.5
Term 131
November 24, 2013
Instructor: Sayed Omar

Student's Name:KEY		
ID #:	Section:	Serial Number:

Provide neat and complete solutions.

Show all necessary steps for full credit and write the answer in simplest form.

No Calculators, Pagers, or Mobiles are allowed during this exam.

Question	Points	Student's Score
1	3	
2	4	
3	4	
4	4	
5	4	
6	4	
7	4	
8	3	
9	4	
10	4	
11	4	
12	4	
13	4	
Total	50	

Q1. (1.1 Example 2) (3 points): Solve
$$\frac{2t+4}{3} + \frac{1}{2}t = \frac{1}{4}t - \frac{7}{3}$$

Solution:

$$\frac{2t+4}{3} + \frac{1}{2}t = \frac{1}{4}t - \frac{7}{3}$$

Multiplying both sides by 12: $(12)\frac{2t+4}{3} + (12)\frac{1}{2}t = (12)\frac{1}{4}t - (12)\frac{7}{3}$

$$(4)(2t+4)+6t = 3t - (4)7$$

$$8t+16+6t = 3t - 28$$

$$14t-3t = -16-28$$

$$11t = -44$$

$$t = -4$$

$$SS = \{-4\}$$

Q2. (4 points): (Recitation 1.1 Q#2)

Solve the following equations for the indicated variable:

(a)
$$z = y \left(1 + \frac{m}{x} \right)$$
 for x

(b)
$$y = \frac{a+x}{3-ax}$$
 for x

Solution:

a)
$$z = y \left(1 + \frac{m}{x}\right)$$

$$z = y + \frac{ym}{x}$$

$$\frac{ym}{x} = z - y$$

$$\frac{x}{ym} = \frac{1}{z - y}$$

$$x = \frac{ym}{z - y}$$

b)
$$\frac{y}{1} = \frac{a+x}{3-ax}$$

$$a+x = 3y - xay$$

$$xay + x = 3y - a$$

$$x(ay + 1) = 3y - a$$

$$x = \frac{3y - a}{ay + 1}$$

Q3. (4 points):

The length of a rectangle is 4 centimeters more than the width. If the length and width are increased by 5 cm, the perimeter of the new rectangle will be 2 cm less than 7 times the width of the original rectangle. Find the dimensions of the original rectangle.

Solution:

$$l = w + 4$$

$$w$$

Original rectangle

Side is increased by 5 cm

The perimeter of the new triangle is

$$P_{new} = 7w - 2$$

$$2(l+5) + 2(w+5) = 7w - 2$$

$$2(w+4+5) + 2(w+5) = 7w - 2$$

$$2w + 18 + 2w + 10 = 7w - 2$$

$$30 = 3w$$

$$w = 10 \text{ cm}$$

$$l = 10 + 4 = 14 \text{ cm}$$

State the answer: The width and length of the original rectangle are 10 cm and 14 cm. The dimension of the rectangle is 10 cm by 14 cm.

Q4. (4 points): If $z = \frac{3i}{4-i} + i^{23}$ find the conjugate of z.

Solution:

$$z = \frac{3i}{4-i} + i^{23} = \frac{3i}{4-i} \cdot \frac{4+i}{4+i} + i^{22} \cdot i = \frac{12i + 3i^{2}}{4^{2} - i^{2}} + \left(i^{2}\right)^{11} \cdot i = \frac{-3 + 12i}{17} - i$$

$$= \frac{-3 + 12i - 17i}{17} = -\frac{3}{17} - \frac{5}{17}i$$

$$\overline{z} = -\frac{3}{17} + \frac{5}{17}i$$
Answer: $\overline{z} = -\frac{3}{17} + \frac{5}{17}i$

Q5. (1.4 Recitation Question 3) (4 points):

If the equation $2x^2 - \frac{5}{2}x = 3 - x$ is written by completing the

square as $(x-a)^2 = b$ find a and b.

Solution:

$$4x^{2} - 5x = 6 - 2x$$
$$4x^{2} - 3x = 6$$

Math 001 - Class Test II, (Textbook: 1.1 to 2.5) Term 131 Instructor: Sayed Omar, Page 3 of 7

$$x^2 - \frac{3}{4}x = \frac{3}{2}$$

$$x^{2} - \frac{3}{4}x + \left(\frac{3}{8}\right)^{2} = \frac{3}{2} + \frac{9}{64}$$

$$\left(x - \frac{3}{8}\right)^2 = \frac{105}{64} \implies a = \frac{3}{8}, b = \frac{105}{64}$$

Q6. (4 points): (1.6 Exercise 16): Solve $\frac{4x+3}{x+1} + \frac{2}{x} = \frac{1}{x^2+x}$.

Solution:

16.
$$\frac{4x+3}{x+1} + \frac{2}{x} = \frac{1}{x^2+x}$$
 or $\frac{4x+3}{x+1} + \frac{2}{x} = \frac{1}{x(x+1)}$

Multiply each term in the equation by the least common denominator, x(x+1), assuming $x \neq 0,-1$.

$$x(x+1)\left[\frac{4x+3}{x+1} + \frac{2}{x}\right] = x(x+1)\left(\frac{1}{x(x+1)}\right)$$

$$x(4x+3) + 2(x+1) = 1$$

$$4x^2 + 3x + 2x + 2 = 1$$

$$4x^2 + 5x + 2 = 1 \Rightarrow 4x^2 + 5x + 1 = 0$$

$$(4x+1)(x+1) = 0$$

$$4x + 1 = 0 \implies x = -\frac{1}{4}$$
 or $x + 1 = 0 \implies x = -1$

Because of the restriction $x \neq -1$, the only valid solution is $-\frac{1}{4}$. The solution set is $\left\{-\frac{1}{4}\right\}$.

Q7. (4 points): Solve $(-2x - 1)(-3x - 1)(2x + 2) \le 0$ Solution:

	∞	-1	-	$-\frac{1}{2}$		$-\frac{1}{3}$	+0	0
-2x-1	+	+	+	0	_		_	
-3x-1	+	+	+	+	+	0	_	
2x+2	_	0	+	+	+	+	+	
(-2x-1)(-3x-1)(2x+2)	_	0	+	0	_	0	+	

$$SS = \left(-\infty, -1\right] \cup \left[-\frac{1}{2}, -\frac{1}{3}\right]$$

Q8. (3 points): Solve each of the following equation. |2x-3| = 5x + 4

Solution:

$$|2x - 3| = 5x + 4$$

$$2x - 3 = 5x + 4 \quad \text{or} \quad 2x - 3 = -(5x + 4)$$

$$-7 = 3x \quad \text{or} \quad 2x - 3 = -5x - 4$$

$$x = -\frac{7}{3} \quad \text{or} \quad x = -\frac{1}{7}$$

Check:
$$x = -\frac{7}{3}$$
, $|2x - 3| = 5x + 4$

Check:
$$x = -\frac{1}{7}$$
, $|2x - 3| = 5x + 4$

$$\left| \frac{-14}{3} - 3 \right| = \frac{-35}{3} + 4$$

$$\frac{23}{3} = -\frac{23}{3}$$

$$x = -\frac{7}{3} \text{ is rejected}$$

$$SS = \left\{ -\frac{1}{7} \right\}$$

$$\left| \frac{-2}{7} - 3 \right| = \frac{-5}{7} + 4$$

$$\frac{23}{7} = \frac{23}{7}$$

$$x = -\frac{1}{7} \text{ is accepted.}$$

Q9. (4 points):

If A is the solution set of the inequality |2x - 9| - 7 < 0 and B is the solution set of the inequality $|x - 10| - 4 \ge 0$, then $A \cap B = ?$

Solution:

$$|2x - 9| < 7$$

$$-7 < 2x - 9 < 7$$

$$2 < 2x < 16$$

$$1 < x < 8$$

$$|x - 10| \ge 4$$

$$x - 10 \le -4 \quad \text{or} \quad x - 10 \ge 4$$

$$x \le 6 \quad \text{or} \quad x \ge 14$$

A:

B:

$$A \cap B = (1,6]$$

Math 001 - Class Test II, (Textbook: 1.1 to 2.5) Term 131 Instructor: Sayed Omar, Page 5 of 7 Q10. (4 points): If the distance between the points A(x + 4, 2x) and B(x, -1) is 5, then find the value of 3x - 1 when x > 0 Solution:

$$5 = \sqrt{\left[x - (x + 4)\right]^{2} + (-1 - 2x)^{2}}$$

$$5 = \sqrt{16 + 1 + 4x + 4x^{2}}$$

$$25 = 17 + 4x + 4x^{2}$$

$$4x^{2} + 4x - 8 = 0$$

$$x^{2} + x - 2 = 0$$

$$(x + 2)(x - 1) = 0$$

$$x = -2, \quad \boxed{x = 1}$$

$$3x - 1 = 3(1) - 1 = 2$$

Q11. (4 points) (2.2 Example 4): Show that $2x^2 + 2y^2 - 6x + 10y = 1$ has a circle as its graph. Find the center and radius.

SOLUTION To complete the square, the coefficients of the x^2 - and y^2 -terms must be 1. In this case they are both 2, so begin by dividing each side by 2.

$$2x^2 + 2y^2 - 6x + 10y = 1$$

$$x^2 + y^2 - 3x + 5y = \frac{1}{2}$$
Divide by 2.
$$(x^2 - 3x) + (y^2 + 5y) = \frac{1}{2}$$
Rearrange and regroup terms in anticipation of completing the square.
$$\left(x^2 - 3x + \frac{9}{4}\right) + \left(y^2 + 5y + \frac{25}{4}\right) = \frac{1}{2} + \frac{9}{4} + \frac{25}{4}$$
Complete the square for both x and y ; $\left[\frac{1}{2}(-3)\right]^2 = \frac{9}{4}$ and $\left[\frac{1}{2}(5)\right]^2 = \frac{25}{4}$

$$\left(x - \frac{3}{2}\right)^2 + \left(y + \frac{5}{2}\right)^2 = 9$$
Factor and add.
$$\left(x - \frac{3}{2}\right)^2 + \left(y - \left(-\frac{5}{2}\right)\right)^2 = 3^2$$
Center-radius form

The equation has a circle with center at $(\frac{3}{2}, -\frac{5}{2})$ and radius 3 as its graph.

Math 001 - Class Test II, (Textbook: 1.1 to 2.5) Term 131 Instructor: Sayed Omar, Page 6 of 7 Q12. (4 points): Sketch the graph and determine the domain and the range of the following functions.

(a):
$$f(x) = \sqrt{-x}$$

(b):
$$g(x) = |-x + 3|$$

(c):
$$h(x) = 2 - \sqrt{4 - (x - 3)^2}$$

Solution:

(a):
$$-x \ge 0 \implies x \le 0 \implies D_f = (-\infty, 0]$$

 $R_f = [0, \infty)$. The function is decreasing on $(-\infty, 0]$.

 $R_g = [0, \infty)$. The function g is decreasing on $(-\infty, 3]$ and increasing on $[3, \infty)$.

(c):
$$h(x) = 2 - \sqrt{4 - (x - 3)^2}$$

 $y = 2 - \sqrt{4 - (x - 3)^2}$
 $y - 2 = -\sqrt{4 - (x - 3)^2}$, $y - 2 \le 0$
 $(y - 2)^2 = 4 - (x - 3)^2$, $y \le 2$
 $(y - 2)^2 + (x - 3)^2 = 4$

 $D_h = [1,5]$, $R_h = [0,2]$

The function h is decreasing on [1,3].

The function h is increasing on [3,5].

Q13. (4 points) (2.4 and 2.5 Recitation Q#2)

- (a): Find the equation of a line with x-intercept $\frac{4}{5}$ and perpendicular to the line $2y = -\frac{2}{3}x + 3$
- (b): Find the x-intercept and y-intercept of the line passing through the points (-2,2) and (1,-3)

Solution:

(a):
$$2y = -\frac{2}{3}x + 3 \implies y = -\frac{1}{3}x + \frac{2}{3} \implies m_1 = -\frac{1}{3} \implies \boxed{m_2 = 3}, \left(\frac{4}{5}, 0\right)$$

$$y - y_1 = m_2 \left(x - x_1 \right)$$

$$y - 0 = 3\left(x - \frac{4}{5}\right)$$

$$y = 3x - \frac{12}{5}$$

(b):
$$m = \frac{-3-2}{1+2} = \frac{-5}{3}$$
, $(-2,2)$

$$y - y_1 = m(x - x_1)$$

$$y-2=\frac{-5}{3}(x+2)$$

$$3y - 6 = -5(x + 2)$$

$$3y - 6 = -5x - 10$$

$$5x + 3y = -4$$

To find
$$x$$
 -intercept, put $y = 0$ and solve for x : $x = -\frac{4}{5}$ or $\left(-\frac{4}{5}, 0\right)$

To find y – intercept, put
$$x = 0$$
 and solve for y: $y = -\frac{4}{3}$ or $\left(0, -\frac{4}{3}\right)$