3.5 Graphing Rational Functions

<u>Def.:</u>

A rational function is a function of the form $f(x) = \frac{P(x)}{Q(x)}$, where P(x) and Q(x) are polynomials and $Q(x) \neq 0$.

Example: $f(x) = \frac{1}{x}$ is defined for all real numbers except x = 0.

X	<i>f</i> (<i>x</i>)
2	0.5
1	1
0.5	2
0.1	10
0.01	100
0.001	1000

X	f(x)
-2	-0.5
-1	-1
-0.5	-2
-0.1	-10
-0.01	-100
-0.001	-1000

$$f(x) \rightarrow +\infty \text{ as } x \rightarrow 0^+$$

$$f(x) \rightarrow -\infty$$
 as $x \rightarrow 0^-$

<u>Def.</u>:

The line x = a is a vertical asymptote (i and i and i b) of the graph of f Provided $f(x) \to +\infty$ or $f(x) \to -\infty$ as $x \to a$ from either left or right.

<u>Def.:</u>

The line y = b is a **horizontal asymptote** ($\ne b$ as $x \rightarrow -\infty$) of the graph of f provided $f(x) \rightarrow b$ as $x \rightarrow +\infty$ or as $x \rightarrow -\infty$.

Theorem on Vertical Asymptotes

If the real number *a* is a zero of the denominator Q(x), then the graph of F(x) = P(x)/Q(x), where P(x) and Q(x) have no common factors, has the vertical asymptote x = a.

Ex1:

Find the vertical asymptote of each rational function.

a)
$$f(x) = \frac{x}{x^2 - 3x - 4}$$

b)
$$g(x) = \frac{x-1}{x^2-1}$$

c)
$$h(x) = \frac{-2x^2}{3x^2 + 1}$$

Theorem on Horizontal Asymptotes

Let

$$F(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0}$$

be a rational function with numerator of degree *n* and denominator of degree *m*.

- **I.** If n < m, then the *x*-axis, which is the line given by y = 0, is the horizontal asymptote of the graph of *F*.
- **2.** If n = m, then the line given by $y = a_n/b_m$ is the horizontal asymptote of the graph of *F*.
- **3.** If n > m, the graph of *F* has no horizontal asymptote.

Ex2: Find the vertical asymptote of each rational function.

a)
$$f(x) = \frac{2x+1}{x^2-3x-4}$$
 b) $g(x) = \frac{3x^2-1}{-2x^2+x-1}$ c) $h(x) = \frac{-2x^5}{3x^2+1}$

<u>Theorem in slant asymptotes</u>

The rational function given by F(x)=P(x)/Q(x), where P(x) and Q(x) have no common factors, has *a slant asymptote* if the degree of the polynomial P(x) in the numerator is one greater than the degree of the polynomial Q(x) in the denominator.

How to find the slant asymptote?

By long division.
$$F(x) = \frac{P(x)}{Q(x)} = (mx+b) + \frac{r(x)}{Q(x)}$$
,

slant asymptote

<u>Ex3:</u>

Find the slant asymptote of
$$f(x) = \frac{4x^3 + 7x^2 + 22x - 8}{x^2 + 2x + 5}$$

Solution

$$\begin{array}{r}
 4x-1 \\
 x^{2}+2x+5 \overline{\smash{\big)}} 4x^{3}+7x^{2}+22x-8 \\
 \underline{4x^{2}+8x^{2}+20x} \\
 -x^{2}+2x-8 \\
 \underline{-x^{2}-2x-8} \\
 \underline{-x^{2}-2x-5} \\
 \underline{4x-3}
 \end{array}$$

Therefore the slant asymptote is given by y=4x-1

<u>Ex4:</u>

Determine all asymptotes for the graph of the following functions.

a)
$$F(x) = \frac{2x^2 - 4x + 5}{x - 3}$$

b)
$$G(x) = \frac{2x(x^2 - 4x - 12)}{x^3 - 36x}$$

c)
$$h(x) = \frac{x^2 - 1}{x^3 - 1}$$

<u>Ex5:</u>

Give an example of a rational function without any asymptote.

Ex6:

If y = -3 is a horizontal asymptote for the graph of $F(x) = \frac{ax^2 + x + 2}{2x^2 - x - 1}$, then find the vertical asymptote(s).

General Procedure for Graphing Rational Functions That Have No Common Factors

- **I.** *Asymptotes* Find the real zeros of the denominator Q(x). For each zero *a*, draw the dashed line x = a. Each line is a vertical asymptote of the graph of *F*. Also graph any horizontal asymptotes.
- **2.** *Intercepts* Find the real zeros of the numerator P(x). For each real zero c, plot the point (c, 0). Each such point is an x-intercept of the graph of F. For each x-intercept use the even and odd powers of (x c) to determine if the graph crosses the x-axis at the intercept or if the graph intersects but does not cross the x-axis. Also evaluate F(0). Plot (0, F(0)), the y-intercept of the graph of F.
- **3.** *Symmetry* Use the tests for symmetry to determine whether the graph of the function has symmetry with respect to the *y*-axis or symmetry with respect to the origin.
- **4.** *Additional points* Plot some points that lie in the intervals between and beyond the vertical asymptotes and the *x*-intercepts.
- **5.** *Behavior near asymptotes* If x = a is a vertical asymptote, determine whether $F(x) \rightarrow \infty$ or $F(x) \rightarrow -\infty$ as $x \rightarrow a^-$ and also as $x \rightarrow a^+$.
- **6.** *Complete the sketch* Use all the information obtained above to sketch the graph of *F*.

Ex7: Sketch the graph of $f(x) = \frac{x+2}{x-2}$

Solution

<u>Asymptotes</u>

V.A.: x=2

H.A.: y=1

<u>Intercepts</u>

- *x*-intercept: put $y = 0 \Rightarrow x + 2 = 0 \Rightarrow x = -2 \Rightarrow (-2, 0)$
- y-intercept: put $x = 0 \Rightarrow y = -1 \Rightarrow (0, -1)$

Check if the graph intersects the H.A.

Solve the equation: $f(x) = 1 \Rightarrow x + 2 = x - 2 \Rightarrow 2 = -2!$

Therefore, the graph does not intersect the H.A.

Ex8: Sketch the graph of the following functions.

c)
$$h(x) = \frac{2x^2 - 8}{x^2 + 2}$$

<u>Ex9:</u>

Determine the point at which the graph

$$F(x) = \frac{3x^3 + 2x^2 - 8x - 12}{x^2 + 4}$$

intersects its slant asymptote.