2.5 PROPERTIES OF GRAPHS

(التماثل) <u>Symmetry</u> (التماثل

Symmetry with Respect to the *x***-axis:** If (x, y) on the graph, then (x, -y) is also in the graph **Symmetry with Respect to the** *y***-axis:** If (x, y) on the graph, then (-x, y) is also in the graph **Symmetry with Respect to the origin:** If (x, y) on the graph, then (-x, -y) is also in the graph

Ex1: Determine whether the graph of each equation is symmetric with respect to the a. *x*-axis, b. *y*-axis, c. origin

1)
$$y = x^{2} + 1$$

2) $xy = 4$
3) $|x| - |y| = 6$
4) $x^{2} = |x - y^{2}|$
5) $y = \frac{x}{|x|}$

Ex2: Find the image of the point R(-2, 3) with respect to the *x*-axis, *y*-axis, and the origin

II) Even and Odd Functions

A function *f* is **even** if f(-x) = f(x) for every *x* in the domain of *f*.

A function f is odd if f(-x) = -f(x) for every x in the domain of f.

<u>Ex3</u>: Determine each function is even, odd , or neither.

$$1) f(x) = x^2$$

Solution

$$f(-x) = (-x)^2 = x^2 = f(x) \Rightarrow f(x)$$
 is even

$$2) g(x) = x^3$$

Solution

$$g(-x) = (-x)^3 = -x^3 = -g(x) \Rightarrow g(x)$$
 is odd

 $3)h(x) = x^3 + x^2$

Solution

$$h(-x) = (-x)^3 + (-x)^2 = -x^3 + x^2 \Rightarrow g(x)$$
 is neither even
nor odd

4)
$$k(x) = 5$$
 5) $f(x) = \frac{x^3}{x^2 + 1}$ 6) $f(x) = \frac{x^4}{\sqrt[5]{x^3 - x}}$
even odd odd

Notes:

■ If the graph of an even function is symmetric with respect to with respect to the y-axis.

■ If the graph of an odd function is symmetric with respect to with respect to the origin.

If the graph is not symmetric with respect to the y-axis or the origin, then function is neither even nor odd

<u>III) Translations (الإزاحة) of Graphs</u>

I) Vertical Translations

•If c is a positive real number, the graph of f(x) + c is the graph of y = f(x) shifted upward c units.

•If c is a positive real number, the graph of f(x) - c is the graph of y = f(x) shifted downward c units.

II) Horizontal Translations

•If c is a positive real number, then the graph of f(x - c) is the graph of y = f(x) shifted to the right c units.

•If c is a positive real number, then the graph of f(x + c) is the graph of y = f(x) shifted to the left c units.

Basic Graphs:

9

Ex4: Sketch the graph of the following functions

1) $y = x^2$ 2) $y = x^2 + 1$ 3) $y = x^2 - 1$ 4) $y = (x+1)^2$ 5) $y = (x-1)^2$ 6) $y = (x-1)^2 + 2$ 7) $y = (x+1)^2 + 2$ **Ex5:** Find the range of the function f(x) = |x+1| - 3

<u>Ex6</u>: If the graph of the function $y = \frac{x-1}{x+3}$ is shifted

horizontally two units to the left and vertically three units up, hen find the equation of the new graph.

<u>IV) Reflections (الإنعاس) of Graphs</u>

•The graph of the function y = -f(x) is the graph of y = f(x)reflected across the *x*-axis.

• The graph of the function y = f(-x) is the graph of y=f(x) reflected across the *y*-axis.

<u>Ex7</u>: Sketch the graph of the following functions:

1)
$$y = -\sqrt{x}$$

2) $y = \sqrt{-x}$
3) $y = -\sqrt{x+1}$
4) $y = -\sqrt{x+1}$
5) $y = \sqrt{-x+1}$
6) $y = \sqrt{-x+1}$
7) $y = -\sqrt{x-1}+2$
8) $y = \sqrt{-x+1}-2$
9) $y = -\sqrt{-x+1}+2$

Note: I) If
$$(x, y) \in f(x)$$
 then $\left(\frac{1}{a}x, y\right) \in f(ax)$ and $(x, ay) \in af(x)$

<u>Ex</u>: If the point (-1, 2) lies on the graph of y = f(x), then find the image of this point on the graph of the following functions:

1)
$$y = 2f(x)$$

2) $y = f(2x)$
3) $y = 2f(\frac{1}{3}x)$
4) $y = 3f(x) + 1$
5) $y = -3f(2x) + 2$

<u>V) Stretching (التمدد) and Compressing (التمدد) of Graphs</u>

1) Vertical Stretching and Compressing

If c > 1 then the graph of y = c f(x) is the graph of y = f(x)stretched vertically by c.

If 0 < c < 1 then the graph of y = c f(x) is the graph of y = f(x)shrunk vertically by *c*.

Example:

 $y=2x^2$ is the graph of $y = x^2$

stretched vertically by 2.

 $y = \frac{1}{4}x^2$ is the graph of $y = x^2$ compressed vertically by $\frac{1}{4}$.

2) Horizontal Compressing and Stretching

If c > 1, the graph of y = f(cx) is the graph of y = f(x)compressed horizontally by c.

If 0 < c < 1, the graph of y = f(cx) is the graph of y = f(x)stretched horizontally by *c*.

Ex8: Graph
$$y = \frac{1}{2}(x+1)^3 - 1$$
 using the graph of $y = x^3$.

