Math 001 — Domain & Range

To find the domain and range of a relation or function we have to keep in mind some important notes such as :

• First The **Domain** : The domain of a function y = f(x) is the set of all possible real values of x for which the function is defined.

Remember that all denominators should not equal to 0 and what is inside the **even** nth root should be non-negative .

Now let us find the domain of the following relations or functions :

- 1. For x = -2 : The domain = $\{-2\}$
- 2. For y = 3; y = 2x + 5; $y = x^2 4$; y = |x 2|; $y = \sqrt[3]{x + 4}$; $y = \frac{1}{x^2 + 9}$ and $y = \sqrt{x^2 + 1}$: The domain $\Re = (-\infty, \infty)$.
- 3. For $y = \frac{1}{x^2 2x 3}$: We have $x^2 2x 3 \neq 0 \Rightarrow (x 3)(x + 1) \neq 0 \Longrightarrow x \neq 3, -1$. Therfore the domain $= (-\infty, -1) \cup (-1, 3) \cup (3, \infty)$.
- 4. For $y = \sqrt{x^2 5x + 4}$: We have $x^2 5x + 4 = (x 4)(x 1) \ge 0 \Longrightarrow$ (by sign test) $\boxed{-\infty < x \le 1}$ or $\boxed{4 \le x < \infty}$. So the domain $= (-\infty, 1] \cup [4, \infty)$.
- 5. For $y = \frac{1}{\sqrt{9 x^2}}$: Here $9 x^2 > 0 \Longrightarrow x^2 < 9 \Longrightarrow |x| < 3 \Longrightarrow -3 < x < 3$. So the domain = (-3, 3).
- 6. For $y = \frac{1}{\sqrt[3]{x^2 x 2}}$: Here $x^2 x 2$ can be negative but **not** 0, i.e., $x^2 - x - 2 = (x - 2)(x + 1) \neq 0 \Longrightarrow x \neq 2, -1 \Longrightarrow$ domain $= (-\infty, -1) \cup (-1, 2) \cup (2, \infty)$
- 7. For $y = \sqrt[4]{3 |x 2|}$: In this case $3 |x 2| \ge 0 \Longrightarrow |x 2| \le 3$ $\Longrightarrow -3 \le x - 2 \le 3 \Longrightarrow -1 \le x \le 5 \Longrightarrow \text{domain} = [-1, 5]$.
- 8. Notice that the domain of $f(x) = \sqrt{\frac{x+1}{x-3}}$ is not the same as the domain of $g(x) = \frac{\sqrt{x+1}}{\sqrt{x-3}}$. The reason for this is that in f(x): $\frac{x+1}{x-3} \ge 0$ while in g(x): $(x+1) \ge 0$ and (x-3) > 0. In fact $D_f = (-\infty, -1] \cup (3, \infty)$ while $D_g = (3, \infty)$.
- Second The **Range** : The range of y = f(x) is the set of all possible real values of y. We have to remember for example that : $|x| \ge 0$; $x^2 \ge 0$; $x^4 \ge 0$ for any $x \in \Re$ and $\sqrt{x} \ge 0$; $\sqrt[4]{x} \ge 0$ for any $x \ge 0$. This implies that $|x| - 2 \ge -2$; $x^2 + 5 \ge 5$; $x^4 - 8 \ge -8$ and $\sqrt{x} - 3 \ge -3$.

Similarly $-|x| \le 0$; $-x^2 \le 0$; $-(x+2)^4 \le 0$ for any $x \in \Re$ and $-\sqrt{x} \le 0$; $-\sqrt[4]{x} \le 0$ for any $x \ge 0$. This implies that $-|x| + 4 \le 4$; $3 - x^2 \le 3$; $-\sqrt{x} - 1 \le -1$ etc..

In addition to this sometimes you need to solve x in terms of y to find the range of a relation or function.

-1-

Р.Т.О.

Next let us find the range of the following :

- 1. For y = -3 : The range = $\{-3\}$.
- 2. For x = 3; y = x 2; $y = x^3 + 1$ and $y = \sqrt[5]{x + 4}$: The range $= (-\infty, \infty)$.
- 3. For $y = \sqrt{x+2} 2$: The range $= [-2, \infty)$, because $\sqrt{x+2} \ge 0$.
- 4. For $y = 3 \sqrt[4]{x+1}$: The range $= (-\infty, 3]$, because $-\sqrt[4]{x+1} \le 0$.
- 5. For y = |1 2x| 4 : The range $= [-4, \infty)$, because $|1 2x| \ge 0$.
- 6. For $y = x^2 6x$: By completing to a perfect square $y = (x^2 6x + 9) 9 = (x 3)^2 9 \ge -9$, so the range = $[-9, \infty)$.
- 7. For $y = \frac{1}{x-1}$: Notice that $x = \frac{1+y}{y}$, so $y \neq 0$ and then the range $= (-\infty, 0) \cup (0, \infty)$.
- 8. For $y = \sqrt{x^2 + 4}$: Notice that $y \ge 0$ and $x = \pm \sqrt{y^2 4}$, so $y^2 4 \ge 0 \Longrightarrow y^2 \ge 4$ $\Longrightarrow |y| \ge 2 \Longrightarrow y \le -2$ or $y \ge 2$ but $y \ge 0$. Therefore the range = $(-\infty, -2] \cup [2, \infty) \cap [0, \infty) = [2, \infty)$.
- 9. For $y = \sqrt{9 x^2}$: Notice that $y \ge 0$ and $x = \pm \sqrt{9 y^2}$, so $9 y^2 \ge 0 \Longrightarrow y^2 \le 9$ $\implies |y| \le 3 \Longrightarrow -3 \le y \le 3$ but $y \ge 0 \Longrightarrow$ the range = [0,3]. We can also find the range of this function by noticing that the graph is the upper half of a circle of ceter (0,0), radius 3.
- 10. For $y = -\sqrt{x^2 16}$: Notice that $y \le 0$ and $x = \pm \sqrt{y^2 + 16}$. The only restriction on y is that $y \le 0$, so the range = $(-\infty, 0]$.

Exercise :- Find the domain and range of the following :

1) y = -|x - 8| + 82) $y = \sqrt{x - 2} - 3$ 3) $x^2 - 4x + y^2 + 8y = 0$ 4) $y = \sqrt{|x| - 4}$ 5) $y = \frac{2x + 1}{x - 3}$ 6) $y = \sqrt{\frac{x - 5}{x + 1}}$ 7) $y = -\sqrt{x^2 - 16}$ 9) $y = \sqrt{x^2 - 6x + 9}$ 10) $y = \sqrt{x^2 - 6x + 9}$ 11) $y = \frac{-1}{x^2 + 9}$ 12) $y = \frac{\sqrt{x - 5}}{\sqrt{x + 1}}$

BY A . AL-SHALLALI