$\begin{array}{c} \text{Math } 002-\text{Term } 052 \\ \text{Recitation hour } (4.4 \ \& \ 4.5) \end{array}$

Q1) Expand the logarithm
$$\log \sqrt[5]{\frac{x^2 z^2}{x^4 + 2}}$$
, where, $x > 0, z > 0$

Solution:
$$= \frac{1}{5} \left[\log(x^2 z^2) - \log(y^4 + 2) \right] = \frac{1}{5} \left[\log x^2 + \log z^2 - \log(y^4 + 2) \right]$$
$$= \frac{1}{5} \left[2 \log x + 2 \log z - \log(y^4 + 2) \right] = \frac{2}{5} \log x + \frac{2}{5} \log z - \frac{1}{5} \log(y^4 + 2)$$

Q2) If
$$\log 2 = 0.3$$
 and $\log 3 = 0.5$, then find the value of (i) $\log 6$ (ii) $\log 5$ (iii) $\log_5 600$

Solution: (i)
$$\log 6 = \log(2)(3) = \log 2 + \log 3 = 0.3 + 0.5 = 0.8$$

(ii)
$$\log 5 = \log \frac{10}{2} = \log 10 - \log 2 = 1 - 0.3 = 0.7$$

(iii)
$$\log_5 600 = \frac{\log 600}{\log 5} = \frac{\log 100 + \log 6}{\log 5} = \frac{2 + 0.8}{0.7} = \frac{2.8}{0.7} = \frac{28}{7} = 4$$

Q3) Find the exact values of (i)
$$\frac{\log_5 32}{\log_5 2}$$
 (ii) $\ln(\ln e) + e^{(1-2\ln 3)}$ (iii) $(\sqrt{3})^{\frac{1}{\log_4 3}}$

Solution: (i)
$$\frac{\log_5 32}{\log_5 2} = \log_2 32 = \log_2 2^5 = 5\log_2 2 = 5$$

(ii)
$$\ln(\ln e) + e^{(1-2\ln 3)} = \ln 1 + e \cdot e^{-2\ln 3} = 0 + (e)(3)^{-2} = \frac{e}{0}$$

(iii)
$$(\sqrt{3})^{\frac{1}{\log_4 3}} = \left(3^{\frac{1}{2}}\right)^{\log_3 4} = 3^{\frac{1}{2}\log_3 4} = 3^{\log_3 \sqrt{4}} = \sqrt{4} = 2$$
 (notice that $\frac{1}{\log_a b} = \log_b a$)

Q4) Solve the following equations: (i)
$$\left(\frac{1}{9}\right)^{(3-x)} = (81)^{(2x-5)}$$
 (ii) $\log_3(-x) + \log_3(6-x) = 3$

Solution: (i)
$$\left(\frac{1}{9}\right)^{(3-x)} = (81)^{(2x-5)} \implies 3^{-2(3-x)} = 3^{4(2x-5)} \implies -6 + 2x = 8x - 20$$

 $\implies 14 = 6x \implies x = \frac{14}{6} = \frac{7}{3} \implies \text{S.S.} = \left\{\frac{7}{3}\right\}$

(ii)
$$\log_3(-x) + \log_3(6-x) = 3 \implies \log_3(-x)(6-x) = 3 \implies (-x)(6-x) = 3^3 = 27 \implies x^2 - 6x - 27 = 0 \implies (x-9)(x+3) = 0 \implies x = 9 \text{ or } x = -3$$

Checking for x = 9: $\log(-9)$ is undefined, so x = 9 is rejected.

for
$$x = -3$$
: $\log_3 3 + \log_3 9 \stackrel{?}{=} 3 \implies \log_3 27 \stackrel{?}{=} 3$ (yes). Therefore S.S. = $\{-3\}$

Q5) True or False:

- (i) $\log x^2 = (\log x)^2$ is false, because $\log x^2 = \log[(x)(x)]$ while $(\log x)^2 = (\log x)(\log x)$ which are different.
- (ii) $\log(3+3) = \log 3 + \log 3$ is is false, because $\log(3+3) = \log 6 \neq \log 3 + \log 3 = \log(3)(3) = \log 9$.
- (iii) $\log(1+2+3) = \log 1 + \log 2 + \log 3$ is true, because $\log(1+2+3) = \log 6$ and $\log 1 + \log 2 + \log 3 = 0 + \log 2 + \log 3 = \log(2)(3) = \log 6$
- (iv) If x is any nonzero real number, then $\log x^2 = 2 \log x$ is false, because when x < 0, $\log x^2$ is defined while $2 \log x$ is not. (in fact, if $x \neq 0$, then $\log x^2 = 2 \log |x|$)
- (v) If $\log_{\frac{1}{2}} x > 0$, then $x \in (0,1)$ is true (see the graph of $y = \log_{\frac{1}{2}} x$)

Solved by: A. Al-shallali