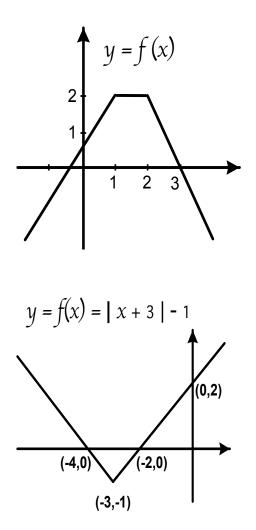
- **Q1)** (a) Domain = $(-\infty, \infty)$ (b) Range = $(-\infty, 2]$
 - (c) f is increasing on $(-\infty, 1]$, decreasing on $[2, \infty)$ and constant on [1, 2]
 - (d) the adjacent graph represents a function, because every vertical line intersects the graph at only one point.



Q2) (a) $f(x) = |x+3| - 1 \implies f(-1) = |-1+3| - 1 = 2 - 1 = 1$

- (b) Domain = $(-\infty, \infty)$, range = $[-1, \infty)$ (c) If y = 0, then $|x + 3| = 1 \implies x + 3 = \pm 1 \implies$
 - x = -4, -2 = x-intercepts. If x = 0, then
 - y = 3 1 = 2 = y-intercept.
- (d) f is increasing on $[-3,\infty)$, decreasing on $(-\infty,-3]$
- Q3) (a) The set $\{(1,\sqrt{2}), (2,\sqrt{2}), (3,\sqrt{2}), (3,-\sqrt{2}), (5,\sqrt{2})\}$ is a relation, but not function, because when $x = 3, y = \pm\sqrt{2}$
 - (b) The set $\{(-\sqrt{2},5), (-\sqrt{2},4), (-\sqrt{2},3), (-\sqrt{2},2)\}$ is also a relation, but not function, because when $x = -\sqrt{2}$, y has four values.
 - (c) $y = \sqrt{3-x}$ represents a function, because for each $x = a \in$ the domain, there is only one y value $(=\sqrt{3-a})$ in the range. (notice that $y^2 = 3-x$ is not function while $y = \sqrt{3-x}$ is)
 - (d) x = |y| + 6 does not represent a function, for x = 7, $y = \pm 1$ (while y = |x| + 6 is a function)
 - (e) Surely x = -5 is only a relation but not function, because when x = -5, y has many many values. (the equation of any h. line y = b represents a function while a v. line x = a doesn't)

Q4) Find the domain of (a) $f(x) = -\sqrt{|x| - 5}$ (b) $f(x) = -\sqrt{\frac{7}{5 - |x|}}$ (c) $f(x) = -\sqrt{\frac{7}{5 + |x|}}$

- (a) $|x| 5 \ge 0 \implies |x| \ge 5 \implies x \le -5$ or $x \ge 5 \implies \text{domain} = (-\infty, -5] \cup [5, \infty)$
- (b) $5 |x| > 0 \implies |x| < 5 \implies -5 < x < 5 \implies$ domain = (-5, 5)
- (c) $\frac{7}{5+|x|}$ is never negative, also $5+|x| \neq 0 \implies \text{domain} = (-\infty, \infty)$