Solution of Recitation - 1.4

Q1) The quadratic equation $x^2 + 11x + k^2 = 0$ has exactly one real solution when $b^2 - 4ac = 0$ $\implies 121 - 4k^2 = 0 \implies k^2 = \frac{121}{4} \implies k = \pm \frac{11}{2}$

Q2)
$$-\frac{1}{2}$$
 satisfies the equation $(2x-1)(3x+2) = k$, so $(-1-1)(-3/2+2) = k \implies k = (-2)(1/2) = -1$.

The equation is $(2x-1)(3x+2) = -1 \implies 6x^2 + x - 1 = 0 \implies (3x-1)(2x+1) = 0$ $\implies x = \frac{1}{3}$ or $x = -\frac{1}{2}$. Therefore the other solution is $\frac{1}{3}$.

Q3) To write the equation $2x^2 - 8x - 5 = 0$ in the form $(x - a)^2 = b$, we must complete the square : $x^2 - 4x = \frac{5}{2} \implies x^2 - 4x + 4 = \frac{5}{2} + 4 \implies (x - 2)^2 = \frac{13}{2} \implies a = 2$ and $b = \frac{13}{2}$.

Q4)
$$a^{2}x^{2} - 2abx + b^{2} - 16 = 0 \implies \text{Disc.} = B^{2} - 4AC = (4a^{2}b^{2}) - 4(a^{2})(b^{2} - 16) = 4a^{2}b^{2} - 4a^{2}b^{2} + 64a^{2} = 64a^{2} \implies x = \frac{-B \pm \sqrt{64a^{2}}}{2A} = \frac{2ab \pm 8|a|}{2a^{2}} = \frac{2ab \pm 8a}{2a^{2}} = \frac{b \pm 4}{a}$$

Q5) Let
$$x_1$$
, x_2 , where $x_1 < x_2$ be the solutions of the equation $x(6x + 7) = 3$
 $\implies 6x^2 + 7x - 3 = 0 \implies (3x - 1)(2x + 3) = 0 \implies x = \frac{1}{3}$ or $x = -\frac{3}{2}$
 $\implies 2x_1 + 3x_2 = 2(-3/2) + 3(1/3) = -3 + 1 = -2$

Q6) (Extra) If r_1 , r_2 are the roots of the equation $x^2 + x + 2 = 0$, then find the quadratic equation whose roots are $\frac{1}{r_1}$, $\frac{1}{r_2}$. Solution: $r_1 + r_2 = -\frac{b}{a} = -1$ and $r_1 \cdot r_2 = \frac{c}{a} = 2$. The quadratic equation whose roots are $\frac{1}{r_1}$, $\frac{1}{r_2}$.

is
$$x^2 - \left(\frac{1}{r_1} + \frac{1}{r_2}\right)x + \frac{1}{r_1} \cdot \frac{1}{r_2} = 0 \implies x^2 - \left(\frac{r_2 + r_1}{r_1 \cdot r_2}\right)x + \frac{1}{r_1 \cdot r_2} = 0$$

$$\implies x^2 - \frac{-1}{2}x + \frac{1}{2} = 0 \implies 2x^2 + x + 1 = 0$$