Math 001 – Notes & Examples On Rational Functions

Def.: If P(x) and Q(x) are polynomials with Q(x) $\neq 0$, then $f(x) = \frac{P(x)}{Q(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \cdots + b_1 x + b_0}$ is called a rational function.

<u>x-intercept(s)</u>: To find the x-intercept(s), first factor P(x) and Q(x) and then cancel the common factors. Set the new numerator equal to 0 and solve for x. For example: $f(x) = \frac{x^2 - 2x - 3}{x^2 - 5x - 6} = \frac{(x+1)(x-3)}{(x+1)(x-6)} = \frac{x-3}{x-6}$, $x \neq -1$, $x \neq 6$. Let $x-3=0 \implies x=3 \implies x$ -intercept = (3,0) only.

<u>Hole</u>: The graph of f(x) has a hole at x = a if (x-a) is a common factor of P(x) and Q(x) and a will not be a zero of the (simplified) new denominator anymore, i.e., $y = \frac{P(x)}{Q(x)} = \frac{(x-a)N(x)}{(x-a)D(x)} = \frac{N(x)}{D(x)}$, $D(a) \neq 0$. The hole (missing point) = $\left(a, \frac{N(a)}{D(a)}\right)$. For example, the function $y = \frac{(x-1)(x+5)}{(x-1)(x-3)} = \frac{x+5}{x-3}$, $x \neq 1, x \neq 3$ has a hole at the point (1, -3).

Vertical Asymptote: The vertical line x = a is called a vertical asymptote of the rational function f(x) if $f(x) \to \infty$ or $f(x) \to -\infty$ as $x \to a^-$ or $x \to a^+$ (graph is closed to the the line x = a) In other words x = a is a vertical asymptote of the function $y = \frac{P(x)}{Q(x)}$ if Q(a) = 0 and $P(a) \neq 0$. To find these lines: Factor P(x) and Q(x), cancel the common factors, then set the new denominator equal to 0 and solve for x. For example $y = \frac{x^2 + 2x - 3}{x^2 - 1} = \frac{(x - 1)(x + 3)}{(x - 1)(x + 1)} = \frac{x + 3}{x + 1}$, $x \neq -1$, $x \neq 1$ has a vertical asymptote x = -1 (hole = (1, 2)).

Horizental Asymptote: The horizontal line y = b is called a horizontal asymptote of the graph of a rational function f(x) if $f(x) \to b$ (graph is closed to the the line y = b) as $x \to -\infty$ or $x \to \infty$. One of the following may occur: (a) If degree of P(x) = n < degree of <math>Q(x) = m, then y = 0 is a horizontal asymptote. (b) If n = m, then $y = \frac{a_n}{b_m}$ is a horizontal asymptote. (c) If n > m, then there is no horizontal asymptote. For example the horizontal asymptote of the functions $y = \frac{2x-1}{x^3-5x^2+3}$ and $y = \frac{x^2-1}{2x^3+x^2+2}$ is y = 0. The horizontal asymptote of $y = \frac{1+2x-3x^2}{4x^2-5x-7}$ is $y = -\frac{3}{4}$

Slant Asymptote: The slant line y = ax + b is called a slant asymptote of the graph of a rational function f(x) if $f(x) \to ax + b$ (graph is closed to the the line y = ax + b) as $x \to -\infty$ or $x \to \infty$. The rational function $f(x) = \frac{P(x)}{Q(x)}$ has a slant asymptote when the degree of P(x) is one greater than the degree of Q(x). To find it, just divide P(x) by Q(x) to get a quotient of the form ax + b, $a \neq 0$, the slant asymptote is y = ax + b. In fact $f(x) = \frac{P(x)}{Q(x)} = (ax + b) + \frac{R(x)}{Q(x)}$, where degree of R(x) < degree of Q(x). So as $x \to \pm \infty$, $\frac{R(x)}{Q(x)} \to 0$ and therefore $f(x) \to ax + b$. For example, the slant asymptote of $f(x) = \frac{x^3 + 3x^2 + 1}{x^2 + 1} = (x + 3) + \frac{-x - 2}{x^2 + 1}$ is y = x + 3.

See the next table for more examples and notes.

#	Function : $y =$	x–int.	y–int.	Hole	V. Asym.	H. Asym.	S. Asym.
1	$\frac{x-1}{(x+1)(x-3)}$	(1, 0)	$\left(0,\frac{1}{3}\right)$		x = -1, x = 3	y = 0	
2	$\frac{2x^2 + 4}{(x - 3)(x + 2)}$		$\left(0,-\frac{2}{3}\right)$		x = 3, x = -2	y = 2	
3	$\frac{\left(x+1\right)^2}{x(x-2)}$	(-1,0)			x = 0, x = 2	y = 1	
4	$\frac{(x-2)(x+2)}{x^4+1}$	(-2,0), (2,0)	(0,-4)			y = 0	
5	$\frac{2x (x-1)^{-1}}{(1+x) (1-x)}$	(0, 0)	(0,0)	(1,-1)	x = -1	y = -2	
6	$\frac{\mathscr{X}(x-3)}{\mathscr{X}(x+1)}$	(3, 0)		(0, -3)	x = -1	y = 1	
7	$\frac{4(x-1)^{2}}{(x-1)(x+2)}$		(0, -2)	(1, 0)	x = -2	y = 4	
8	$\frac{(x-2)(x-3)}{(x-2)^2}$	(3, 0)	$\left(0, \frac{3}{2}\right)$		x = 2	y = 1	
9	$\frac{2x^3}{x^2+1}$	(0, 0)	(0, 0)				y = 2x
10	$\frac{3x (x-1) (x+3)}{(x-1) (x+4)}$	(0,0), (-3,0)	(0, 0)	$\left(1, \frac{12}{5}\right)$	x = -4		y = 3x - 3
11	$\frac{(x+1)^{3}}{(x+1)^{2}} = x+1$		(0, 1)	(-1,0)			

Table: Intercepts, Holes, and Asymptotes of Rational Functions

Notice that in function #:

(6) The point (0, -3) lies on the y-axis, but it's not a y-intercept. It's a hole point, because $x \neq 0$

(7) The point (1,0) lies on the x-axis, but it's not an x-intercept. Again it's a hole point, because $x \neq 1$

(8) At x = 2, there's no hole point. In fact the line x = 2 is a vertical asymptote, because (x - 2) is still a factor of the denominator.

(11) The graph of this function is just the slant line y = x + 1 with a hole at (-1, 0).

Note1: The domain of all of the above functions is the set of all values of x for which the **original** denominator is not equal to 0. For example, the domain of function #7 is $\Re - \{-2, 1\} = (-\infty, -2) \cup (-2, 1) \cup (1, \infty)$

Note2: The graph of a rational function never intersects its vertical asymptotes. But it may intersect its horizontal or slant asymptotes. In function #2, the graph intersects its horizontal asymptote at the point (-8, 2) [by solving f(x) = 2] while in function #6, it doesn't [check by solving f(x) = 1]. Also in function #9, the graph intersects its slant asymptote at the point (0, 0) [by solving f(x) = 2x] while in function #10, it doesn't [check by solving f(x) = 3x - 3].