Questions from Old Exams

1 Section 7.3

- 1. Find the smallest positive angle between two vectors $v = \langle 1, 1 \rangle$, and $w = \frac{-3}{\sqrt{2}}i \frac{3}{\sqrt{2}}j$.
- 2. Given v = 6i 4j, u = 2i + 3j, and $w = \langle 2, -2 \rangle$. Find the scalar projection of $\frac{1}{2}v 3u$ on w.
- 3. Given the vectors $U = \langle \sqrt{3}, 1 \rangle$ and $V = \langle 1, \sqrt{3} \rangle$, find
 - (a) The dot product of the vectors U and V.
 - (b) The angle between the vectors U and V.
 - (c) A vector W of magnitude 6 in the opposite direction of the vector $U \sqrt{3}V$.
- 4. Which one of the following statements is always TRUE for any two nonzero vectors u and v and any nonzero real number k?
 - (a) The vector $\frac{-u}{||u||}$ is a unit vector.
 - (b) The vectors u and ku have the same direction.
 - (c) ||u+v|| < ||u|| + ||v||.
 - (d) ||kv|| = k ||v||.
- 5. Given the vectors u = -2i + 3j and v = i + 5j.
 - (a) Find a vector of length 3 in the opposite direction of the vector u.
 - (b) Find the measure of the smallest angle between the vectors u and v.
- 6. Suppose that the vector $u = \overrightarrow{PQ}$, where the initial point is P(5, 4), and the terminal point is Q(5, 11). If $v = \sqrt{3}i 8j$, then find the magnitude and the direction angle of the vector u + v.
- 7. If $\vec{u} = \langle 2\sqrt{3}, -3 \rangle$ and $\vec{v} = \langle -\sqrt{3}, 4 \rangle$ then find the magnitude and the direction angle of $\vec{u} + \vec{v}$.
- 8. Find the direction angle α and the magnitude ||v|| of the vector $v = \sqrt{3}i 3j$.
- 9. Find all values of the constant k for which the two vectors u = (k-1)i+jand $v = 3i + (k-1)^2 j$ are perpendicular.
- 10. Given the vectors $u = \langle 3, -5 \rangle$, and $v = \langle -3, -1 \rangle$. Find the magnitude and the direction angle of the vector u + v.

- 11. If $\vec{v} = \langle -2, -6\sqrt{3} \rangle$ and $v = -\sqrt{3}i j$, then find the magnitude and the direction angle of the vector $\frac{\vec{v}}{2} \sqrt{3}\vec{u}$.
- 12. If θ , $0 \leq \theta \leq \pi$, is the angle between the vectors $\vec{u} = -i + 2j$ and $\vec{v} = 2i j$, then find $\sin \theta$.
- 13. Find a unit vector in the opposite direction of the vector $\vec{v} = \langle -2, 3 \rangle$.
- 14. If $\vec{u} = \langle 1, 2 \rangle$ and $\vec{v} = \langle -3, \sqrt{3} 1 \rangle$, then find the magnitude and the direction angle of the vector $\vec{u} + \vec{v} + i j$.
- 15. Given the vectors $\vec{w} = \langle 3, -4 \rangle$, $\vec{v} = \langle 4, 3 \rangle$, and $\vec{w} = \langle a, b \rangle$. If \vec{w} is a unit vector opposite in direction to the vector $\vec{u} + \vec{v}$, then find the value of a and b.
- 16. Find the smallest angle between the vectors $\vec{u} = -i 2j$ and $\vec{v} = -i + 3j$.
- 17. If $\vec{u} = \langle 2\cos 80^\circ, 2\sin 80^\circ \rangle$ and $\vec{v} = \langle 3\cos 20^\circ, 3\sin 20^\circ \rangle$, then find $\vec{u} \cdot \vec{v}$.
- 18. If t is the angle between the unit vectors \vec{u} and \vec{v} and $\cos t = \frac{1}{3}$, then find $||\vec{u} \vec{v}||$.
- 19. For the vectors $\vec{u} = \langle 4, 3 \rangle$ and $\vec{v} = \langle 2, 1 \rangle$, let α be the angle between \vec{u} and \vec{v} , where $0^{\circ} \le \alpha \le 180^{\circ}$, then find the value of $(\vec{u} \vec{v}) \cdot (\vec{u} + \vec{v}) + 2 ||\vec{u}|| ||\vec{v}|| \cos \alpha$.
- 20. If \vec{w} and \vec{v} are unit vectors such that $\vec{w} \cdot \vec{v} = -\frac{3}{4}$, then find $||\vec{w} + \vec{v}||$.
- 21. Find two unit vectors which are perpendicular to the vector $\vec{v} = i + 2j$.
- 22. If $\overrightarrow{u} = \langle 2, 1 \rangle$ and $\overrightarrow{v} = \langle 1, -2 \rangle$, then $\overrightarrow{u} + \overrightarrow{v}$ is perpendicular to $a \rangle \overrightarrow{v}$ $b \rangle \overrightarrow{u}$ $c \rangle \overrightarrow{u} + \overrightarrow{v}$ $d \rangle \overrightarrow{u} \overrightarrow{v}$ $e \rangle \overrightarrow{u} 2 \overrightarrow{v}$
- 23. If θ is the angle between $\overrightarrow{u} = i + 3j$ and $\overrightarrow{v} = -i + 3j$, and $0^{\circ} \le \theta \le \pi$, then find $\tan \theta$.
- 24. If \overrightarrow{u} and \overrightarrow{v} are unit vectors and the angle between \overrightarrow{u} and \overrightarrow{v} is 60°, then find the magnitude of the vector $2\overrightarrow{u} 3\overrightarrow{v}$.
- 25. For vectors \vec{u} and \vec{v} , if $||\vec{u} + \vec{v}|| = \sqrt{50}$ and $||\vec{u}|| = ||\vec{v}|| = 4$, then find $\vec{u} \cdot \vec{v}$.
- 26. Which one of the following is not a unit vector?
 - (a) $\langle \frac{1}{2}, -\frac{\sqrt{3}}{2} \rangle$
 - (b) $\langle -1, 0 \rangle$
 - (c) $\langle \sin \frac{\pi}{5}, \cos \frac{\pi}{5} \rangle$
 - (d) $\left\langle \frac{1}{\sqrt{3}}, \frac{\sqrt{2}}{\sqrt{3}} \right\rangle$
 - (e) $\langle \frac{1}{5}, \frac{4}{5} \rangle$

- 27. Find the vector of magnitude 2 and opposite to $\vec{u} = \langle -1, 1 \rangle$.
- 28. If $||\overrightarrow{u}|| = 2$ with direction angle $\theta = 30^{\circ}$, then find the vector \overrightarrow{u} .
- 29. Find the magnitude and the direction angle of $\overrightarrow{u} = 2\langle 6, -1 \rangle 3\langle 4, 5 \rangle$.
- 30. If \vec{w} has magnitude 24 and direction angle 30°, then find the horizontal and vertical components of \vec{w} .
- 31. If θ is the direction angle of $\overrightarrow{u} = \langle -3, 4 \rangle$, then find $\tan 2\theta$.
- 32. If \overrightarrow{u} and \overrightarrow{v} are two nonzero perpendicular vectors, then
 - (a) $||\overrightarrow{u} + \overrightarrow{v}|| > ||\overrightarrow{u} \overrightarrow{v}||$
 - (b) $||\overrightarrow{u} \overrightarrow{v}|| > ||\overrightarrow{u} + \overrightarrow{v}||$
 - (c) $||\overrightarrow{u} + \overrightarrow{v}|| = 0$
 - (d) $\|\overrightarrow{u} + \overrightarrow{v}\| = \|\overrightarrow{u} \overrightarrow{v}\|$
 - (e) $||\overrightarrow{u} \overrightarrow{v}|| = 0$
- 33. If $\overrightarrow{u} = 4i + j$, $\overrightarrow{v} = \langle 1, 3 \rangle$, and $\overrightarrow{w} = \overrightarrow{u} \overrightarrow{v} 2j$, then
 - (a) $\langle -1, 1 \rangle$ is a unit vector opposite to \overrightarrow{w} .
 - (b) $\langle 1, -1 \rangle$ is a unit vector opposite to \overrightarrow{w} .
 - (c) $\langle -\frac{3}{5}, \frac{4}{5} \rangle$ is a unit vector opposite to \overrightarrow{w} .
 - (d) $\langle 3, 4 \rangle$ is a unit vector in the direction of \vec{w} .
 - (e) The direction angle of \vec{u} is greater than the direction angle of \vec{v} .
- 34. If $\vec{u} = \langle 2, -1 \rangle$ and $\vec{v} = -3i + 2j$, then find the direction angle of the vector $2\vec{u} + \vec{v} + i 2\sqrt{3}j$.