Questions from Old Exams

1 Section 7.3

1. Find the smallest positive angle between two vectors $v=\langle 1,1\rangle$, and $w=$ $\frac{-3}{\sqrt{2}} i-\frac{3}{\sqrt{2}} j$.
2. Given $v=6 i-4 j, u=2 i+3 j$, and $w=\langle 2,-2\rangle$. Find the scalar projection of $\frac{1}{2} v-3 u$ on w.
3. Given the vectors $U=\langle\sqrt{3}, 1\rangle$ and $V=\langle 1, \sqrt{3}\rangle$, find
(a) The dot product of the vectors U and V.
(b) The angle between the vectors U and V.
(c) A vector W of magnitude 6 in the opposite direction of the vector $U-\sqrt{3} V$.
4. Which one of the following statements is always TRUE for any two nonzero vectors u and v and any nonzero real number k ?
(a) The vector $\frac{-u}{\|u\|}$ is a unit vector.
(b) The vectors u and $k u$ have the same direction.
(c) $\|u+v\|<\|u\|+\|v\|$.
(d) $\|k v\|=k\|v\|$.
5. Given the vectors $u=-2 i+3 j$ and $v=i+5 j$.
(a) Find a vector of length 3 in the opposite direction of the vector u.
(b) Find the measure of the smallest angle between the vectors u and v.
6. Suppose that the vector $u=\overrightarrow{P Q}$, where the initial point is $P(5,4)$, and the terminal point is $Q(5,11)$. If $v=\sqrt{3} i-8 j$, then find the magnitude and the direction angle of the vector $u+v$.
7. If $\vec{u}=\langle 2 \sqrt{3},-3\rangle$ and $\vec{v}=\langle-\sqrt{3}, 4\rangle$ then find the magnitude and the direction angle of $\vec{u}+\vec{v}$.
8. Find the direction angle α and the magnitude $\|v\|$ of the vector $v=$ $\sqrt{3} i-3 j$.
9. Find all values of the constant k for which the two vectors $u=(k-1) i+j$ and $v=3 i+(k-1)^{2} j$ are perpendicular.
10. Given the vectors $u=\langle 3,-5\rangle$, and $v=\langle-3,-1\rangle$. Find the magnitude and the direction angle of the vector $u+v$.
11. If $\vec{v}=\langle-2,-6 \sqrt{3}\rangle$ and $v=-\sqrt{3} i-j$, then find the magnitude and the direction angle of the vector $\frac{\vec{v}}{2}-\sqrt{3} \vec{u}$.
12. If $\theta, 0 \leq \theta \leq \pi$, is the angle between the vectors $\vec{u}=-i+2 j$ and $\vec{v}=2 i-j$, then find $\sin \theta$.
13. Find a unit vector in the opposite direction of the vector $\vec{v}=\langle-2,3\rangle$.
14. If $\vec{u}=\langle 1,2\rangle$ and $\vec{v}=\langle-3, \sqrt{3}-1\rangle$, then find the magnitude and the direction angle of the vector $\vec{u}+\vec{v}+i-j$.
15. Given the vectors $\vec{u}=\langle 3,-4\rangle, \vec{v}=\langle 4,3\rangle$, and $\vec{w}=\langle a, b\rangle$. If \vec{w} is a unit vector opposite in direction to the vector $\vec{u}+\vec{v}$, then find the value of a and b.
16. Find the smallest angle between the vectors $\vec{u}=-i-2 j$ and $\vec{v}=-i+3 j$.
17. If $\vec{u}=\left\langle 2 \cos 80^{\circ}, 2 \sin 80^{\circ}\right\rangle$ and $\vec{v}=\left\langle 3 \cos 20^{\circ}, 3 \sin 20^{\circ}\right\rangle$, then find $\vec{u} \cdot \vec{v}$.
18. If t is the angle between the unit vectors \vec{u} and \vec{v} and $\cos t=\frac{1}{3}$, then find $\|\vec{u}-\vec{v}\|$.
19. For the vectors $\vec{u}=\langle 4,3\rangle$ and $\vec{v}=\langle 2,1\rangle$, let α be the angle between \vec{u} and \vec{v}, where $0^{\circ} \leq \alpha \leq 180^{\circ}$, then find the value of $(\vec{u}-\vec{v}) \cdot(\vec{u}+\vec{v})+$ $2\|\vec{u}\|\|\vec{v}\| \cos \alpha$.
20. If \vec{u} and \vec{v} are unit vectors such that $\vec{u} \cdot \vec{v}=-\frac{3}{4}$, then find $\|\vec{u}+\vec{v}\|$.
21. Find two unit vectors which are perpendicular to the vector $\vec{v}=i+2 j$.
22. If $\vec{u}=\langle 2,1\rangle$ and $\vec{v}=\langle 1,-2\rangle$, then $\vec{u}+\vec{v}$ is perpendicular to $a) \vec{v} \quad b) \vec{u} \quad c) \vec{u}+$ $\vec{v} \quad d) \vec{u}-\vec{v} \quad$ e) $\vec{u}-2 \vec{v}$
23. If θ is the angle between $\vec{u}=i+3 j$ and $\vec{v}=-i+3 j$, and $0^{\circ} \leq \theta \leq \pi$, then find $\tan \theta$.
24. If \vec{u} and \vec{v} are unit vectors and the angle between \vec{u} and \vec{v} is 60°, then find the magnitude of the vector $2 \vec{u}-3 \vec{v}$.
25. For vectors \vec{u} and \vec{v}, if $\|\vec{u}+\vec{v}\|=\sqrt{50}$ and $\|\vec{u}\|=\|\vec{v}\|=4$, then find $\vec{u} \cdot \vec{v}$.
26. Which one of the following is not a unit vector?
(a) $\left\langle\frac{1}{2},-\frac{\sqrt{3}}{2}\right\rangle$
(b) $\langle-1,0\rangle$
(c) $\left\langle\sin \frac{\pi}{5}, \cos \frac{\pi}{5}\right\rangle$
(d) $\left\langle\frac{1}{\sqrt{3}}, \frac{\sqrt{2}}{\sqrt{3}}\right\rangle$
(e) $\left\langle\frac{1}{5}, \frac{4}{5}\right\rangle$
27. Find the vector of magnitude 2 and opposite to $\vec{u}=\langle-1,1\rangle$.
28. If $\|\vec{u}\|=2$ with direction angle $\theta=30^{\circ}$, then find the vector \vec{u}.
29. Find the magnitude and the direction angle of $\vec{u}=2\langle 6,-1\rangle-3\langle 4,5\rangle$.
30. If \vec{w} has magnitude 24 and direction angle 30°, then find the horizontal and vertical components of \vec{w}.
31. If θ is the direction angle of $\vec{u}=\langle-3,4\rangle$, then find $\tan 2 \theta$.
32. If \vec{u} and \vec{v} are two nonzero perpendicular vectors, then
(a) $\|\vec{u}+\vec{v}\|>\|\vec{u}-\vec{v}\|$
(b) $\|\vec{u}-\vec{v}\|>\|\vec{u}+\vec{v}\|$
(c) $\|\vec{u}+\vec{v}\|=0$
(d) $\|\vec{u}+\vec{v}\|=\|\vec{u}-\vec{v}\|$
(e) $\|\vec{u}-\vec{v}\|=0$
33. If $\vec{u}=4 i+j, \vec{v}=\langle 1,3\rangle$, and $\vec{w}=\vec{u}-\vec{v}-2 j$, then
(a) $\langle-1,1\rangle$ is a unit vector opposite to \vec{w}.
(b) $\langle 1,-1\rangle$ is a unit vector opposite to \vec{w}.
(c) $\left\langle-\frac{3}{5}, \frac{4}{5}\right\rangle$ is a unit vector opposite to \vec{w}.
(d) $\langle 3,4\rangle$ is a unit vector in the direction of \vec{w}.
(e) The direction angle of \vec{u} is greater than the direction angle of \vec{v}.
34. If $\vec{u}=\langle 2,-1\rangle$ and $\vec{v}=-3 i+2 j$, then find the direction angle of the vector $2 \vec{u}+\vec{v}+i-2 \sqrt{3} j$.
