Questions from Old Exams

1 Section 10.1

- 1. Find the echelon form of the matrix $\begin{bmatrix} 1 & -3 & 2 & -4 \\ 2 & 0 & -2 & 4 \\ 0 & 4 & 2 & 11 \end{bmatrix}$.
- 2. Consider the augmented matrix of a linear system $\begin{bmatrix} 1 & -2 & -2 & M & -1 \\ 1 & 1 & 1 & M & 2 \\ 1 & 2 & 2 & M & 1 \end{bmatrix}$.

Which one of the following statements is TRUE?

- (a) The system is independent.
- (b) The system is dependent.
- (c) The system has the solution $\left\{ \left(2, 1, \frac{1}{2}\right) \right\}$.
- (d) The system has the solution $\{(5, -1, -1)\}$.
- (e) The system has no solution.

3. Which one of the following statements is TRUE about the linear system of

equations which has the augmented matrix $\begin{bmatrix} 1 & 2 & -1 & 1 \\ 2 & 4 & -2 & 0 \\ 1 & 2 & (c-1)^2 & c+1 \end{bmatrix}$.

- (a) The system is consistent if c = 0, with infinitely many solutions.
- (b) The system is consistent for all $c \neq 0$, with exactly one solution.
- (c) The system can be made consistent for suitable choice of c.
- (d) The system is inconsistent for all values of c.
- (e) The system is consistent for c > 0.

4. If the augmented matrix of a system of linear equations is then find the solution set of the system.	$\begin{array}{c}1\\0\\0\\0\end{array}$	$2 \\ 0 \\ 1 \\ 0$	$\begin{array}{c} 0 \\ 0 \\ 2 \\ 0 \end{array}$	$ \begin{array}{c} 1 \\ 0 \\ 3 \\ 3 \end{array} $	$\begin{bmatrix} 1\\ -1\\ -2\\ -3 \end{bmatrix},$
5. If the augmented matrix of a system of linear equations is then find the solution set of the system.	1 0 0 0	$2 \\ 1 \\ 0 \\ 0$	$ \begin{array}{c} 3 \\ 2 \\ 1 \\ 0 \end{array} $	4 3 2 1	$\begin{bmatrix} 5 \\ 4 \\ 3 \\ 2 \end{bmatrix}$
6. If the augmented matrix of a system of linear equations is then	1 2 0 0	$2 \\ 4 \\ 0 \\ 0$	${3 \\ 0 \\ 2 \\ 4}$	$4 \\ 0 \\ 1 \\ 2$	$\begin{bmatrix} 5\\1\\0\\2 \end{bmatrix}$

- (a) the system has infinitely many solutions.
- (b) the system has a unique solution.
- (c) the matrix can not be the augmented matrix of a 4×4 system.
- (d) the system has two solutions.
- (e) the system has no solution.
- 7. Which one of the following represents an inconsistent system?

(a) $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$
$\begin{bmatrix} 0 & 0 & 1 & 3 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 0 & 3 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 2 & 4 & 1 \end{bmatrix}$ [1 + 2 + 0 + 2]
(c) $\begin{bmatrix} 2 & 0 & 3 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 2 & 4 & 1 \end{bmatrix}$
(d) $\begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
(e) $\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 1 & 1 & 1 & 0 \end{bmatrix}$
8. If the augmented matrix of a system of linear equations is $\begin{bmatrix} -1 & 1 & 0 & -1 \\ 0 & 1 & -1 & 6 \\ 1 & 0 & 1 & -1 \end{bmatrix}$
then find the solution set of the system.
9. If the system $\begin{bmatrix} 1 & 1 & 1 & 2 \\ 3 & 2 & 4 & 5 \\ 2 & 1 & 1 & 6 \end{bmatrix}$ is written as $\begin{bmatrix} 1 & m & n & 2 \\ 0 & 1 & k & 1 \\ 0 & 0 & 1 & -\frac{3}{2} \end{bmatrix}$, then find mnk.
10. Find the solution set of $\begin{bmatrix} 1 & 1 & 1 & -3 \\ 2 & -1 & 1 & 1 \\ 4 & 1 & 3 & 5 \end{bmatrix}$.
11. If (a, b, c) is the solution for $\begin{bmatrix} 1 & 2 & -1 & 5 \\ 2 & -1 & 3 & 0 \\ 1 & 1 & 1 & 2 \end{bmatrix}$, then find the value of
3a+4b+c.
12. Given the system $\begin{bmatrix} 1 & -2 & 4 & 2 \\ 0 & 1 & 3 & -1 \\ 0 & 2 & 6 & A \end{bmatrix}$. Which one of the following is FALSE?

,

- (a) The system is inconsistent for all $A \neq 2$.
- (b) The system is consistent with infinitely many solutions for A = -2.
- (c) The system has no unique solution for any real number A.
- (d) The system can be made consistent or inconsistent for a suitable choice of A.
- (e) The system is consistent for any real A.

2 Section 10.2

1. If
$$C = AB$$
 where $A = \begin{bmatrix} 1 & -1 & 0 & 1 \\ 2 & 3 & -1 & 4 \\ -1 & 2 & 1 & 3 \\ 0 & 1 & -1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 1 & 0 & 1 \\ 1 & -1 & 2 & -1 \\ 0 & 1 & 1 & 1 \\ 1 & -1 & 0 & 2 \end{bmatrix}$, then find C_{23} , the third row and second column of C .

2. Given the matrices $A = \begin{bmatrix} 3 & 2 & 0 \\ 3 & 5 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 5 & 0 \\ -3 & 1 \\ 0 & -1 \end{bmatrix}$, and $C = \begin{bmatrix} \frac{3}{2} & 1 \\ 0 & \frac{3}{2} \end{bmatrix}$, then find the matrix AB - 2C. 3. If $A = \begin{bmatrix} 0 & -2 & 7 \\ 5 & 4 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 1 \\ -1 & 5 \\ 6 & 0 \end{bmatrix}$, $C = \begin{bmatrix} 40 & -10 \\ 28 & 23 \end{bmatrix}$, and D = AB - C, then find the element in the second row and second column of the matrix D. 4. Given $A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 0 \\ x & 2 \end{bmatrix}$, and $C = \begin{bmatrix} 0 & 0 \\ 6 & 0 \end{bmatrix}$. If $AB = 2A^2 - C$, then find x.

- 5. Let $A = \begin{bmatrix} 2 & -3 \\ 0 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & 3 \\ 0 & 1 \end{bmatrix}$. If X is a 2×2 matrix such that X = 2A B, then
 - (a) X = -3B
 - (b) X = 2A
 - (c) X = -2B
 - (d) X = 2B
 - (e) X = -3B

6. If
$$A = \begin{bmatrix} 1 & 4 \\ 0 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 0 & -1 & 2 \\ 3 & 4 & 0 \end{bmatrix}$$
, then find the element a_{32} of A .

7. Let
$$A = \begin{bmatrix} -1 & 2 \\ 3 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$, and $C = \begin{bmatrix} a & \frac{1}{2} \\ 3 & b \end{bmatrix}$. If $AB = 2C$, then find a and b .
8. If $A = \begin{bmatrix} 1 & 1 \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ and $B = \begin{bmatrix} \frac{1}{2} & 1 \\ \frac{1}{2} & 0 \end{bmatrix}$, then
(a) $A + B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
(b) $A - B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
(c) $AB = BA$
(d) $AB = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
(e) $AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
9. If $A = \begin{bmatrix} -1 & 0 & 1 \\ 3 & 1 & -2 \end{bmatrix}$, then find the element in the second row and

9. If $A = \begin{bmatrix} -1 & 0 & 1 \\ 3 & 1 & -2 \\ 0 & -2 & 0 \end{bmatrix}$, then find the element in the second row and third column of $(A^2 - A)$.

10. If
$$C = \begin{bmatrix} 2 & 2 & 1 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{bmatrix}$$
 and $D = \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 0 & 2 & 1 \\ 4 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$, then find the

element in the second row and third column of CD.

- 11. If C is 4×3 , A and B are 3×4 , then find the size of $C \cdot (2A + 3B)$.
- 12. If A and B are two matrices of size 4×3 , then find the size of $B^T \cdot (2A + 3B)$.
- 13. If $A = \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 1 \\ 4 & 5 \end{bmatrix}$, and $C = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$, then find $A^T 2B + C^2$.

14. If
$$A = \begin{bmatrix} -1 & 0 \\ 3 & 1 \\ 0 & -2 \end{bmatrix}$$
, and $B = \begin{bmatrix} 2 & 1 \\ 1 & 0 \\ -1 & 2 \end{bmatrix}$, then find $(A + B) \cdot B^T$.

- 15. Let A and B be square matrices of the same order and A^T is the transpose of A. Which one of the following is not always true?
 - (a) $(A^T)^T = A$ (b) $(A+B)^T = A^T + B^T$

- (c) $(A+B)^2 = A^2 + 2AB + B^2$.
- (d) $(AB)^T = B^T A^T$
- (e) c(A+B) = cA + cB, where c is a real number.

16. If
$$A = \begin{bmatrix} 3 & 2 \\ x & 0 \\ -2 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} -1 & 2 \\ 3 & 0 \end{bmatrix}$ and $B^T A^T = 2 \begin{bmatrix} \frac{3}{2} & \frac{1}{2} & \frac{x}{2} \\ y & -1 & -2 \end{bmatrix}$, then find x and y.

3 Section 10.3

- 1. If AX = B is the matrix equation which represents the system $\begin{cases} 3x + 2y = 1 \\ 2x + y = 6 \end{cases}$, then find X.
- 2. Given the matrices $A = \begin{bmatrix} 2 & -1 \\ 4 & -3 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 1 \\ 3 & -5 \end{bmatrix}$, $C = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$, $X = \begin{bmatrix} x \\ y \end{bmatrix}$. If (A B) X = C, then X =(a) $\begin{bmatrix} 2 & 2 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix}$ (b) $\begin{bmatrix} 2 & 2 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & -1 \\ \frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix}$ (d) $\begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 1 & 0 \end{bmatrix}$ (e) $\begin{bmatrix} 4 \\ 2 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 1 & 0 \end{bmatrix}$ 3. If $A^{-1} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is the inverse of $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$, then find a and c. 4. If the matrix $\begin{bmatrix} 2 & 4 & 3 \\ 0 & 1 & -1 \\ 3 & 5 & 7 \end{bmatrix}$ is the multiplication inverse of $\begin{bmatrix} 4 & -13t & -7t \\ x & 5t & yt \\ -1 & 2t & 2t \end{bmatrix}$, then find x, y, and t. 5. If $a \neq 0$ and $A = \begin{bmatrix} a & 0 & 0 \\ 0 & 2 & -4 \\ 0 & 1 & -2 \end{bmatrix}$, then

(c)
$$A^{-1} = \begin{bmatrix} a^{-1} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & 1 \end{bmatrix}$$

(d) A^{-1} does not exist.
(e) $A^{-1} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

6. If A and B are matrices of order $n \times n$, then

- (a) if A^{-1} exists, then $ABA^{-1} = B$ where $B \neq I$.
- (b) A^{-1} and B^{-1} are $(n+1) \times (n+1)$ matrices.
- (c) if AB = O, then either A = O or B = O, where O is an $n \times n$ zero matrix.
- (d) if A^{-1} exists, then (AA^{-1}) is the $n \times n$ identity matrix.
- (e) $(A+2B)(A-2B) = A^2 4B^2$.

7. If
$$A^{-1} = \begin{bmatrix} 2 & -1 & 1 \\ -3 & 0 & 1 \\ 0 & 2 & 2 \end{bmatrix}$$
 and $B^{-1} = \begin{bmatrix} 0 & -1 & 0 \\ 3 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$, then find the element in the second row and third column of $(AB)^{-1}$

element in the second row and third column of $(AB)^{-1}$.

8. If
$$A = \begin{bmatrix} 2 & -1 \\ 3 & -2 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 3 \\ 2 & 2 \end{bmatrix}$, and $O = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, then

- (a) $A^{-1} = -A, B^{-1}$ does not exist.
- (b) $A^{-1} = A, B^{-1}$ does not exist.
- (c) $A^{-1} = A, B^{-1} = O.$
- (d) A^{-1} does not exist, $B^{-1} = O$. (e) $A^{-1} = \begin{bmatrix} \frac{2}{7} & \frac{1}{7} \\ \frac{-3}{7} & \frac{7}{7} \end{bmatrix}$, B^{-1} does not exist.

9. If
$$A^{-1} = \begin{bmatrix} 2 & 0 & 1 \\ 3 & 0 & x \\ -6 & 1 & -4 \end{bmatrix}$$
 is the inverse of $\begin{bmatrix} 2 & -1 & 0 \\ 0 & 2 & 1 \\ -3 & 2 & 0 \end{bmatrix}$, then find x .

- 10. Given the system $\begin{cases} 3x 2y = 4\\ x + 3y = 5 \end{cases}$. Find the element in the first row and first column of the inverse of the coefficient matrix.
- 11. If $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} x & 3x & -2x \\ 2x & 0 & 2x \\ -x & 3x & 2x \end{bmatrix}$, which of the following is TRUE?

- (a) $x < -\frac{1}{2}$ (b) $\frac{1}{2} < x < 1$ (c) x > 1(d) $-\frac{1}{2} < x < \frac{1}{2}$ (e) 1 < x < 2
- 12. If A and B are $n \times n$ matrices and A^{-1} and B^{-1} exist, then which one of the following is not always true?
- (a) $(AB)^{T} = B^{T}A^{T}$ (b) A^{-1} is $n \times n$. (c) $AA^{-1} = I$ (d) $(AB)^{-1} = A^{-1}B^{-1}$ (e) $(A+B)^{2} = A^{2} + B^{2} + AB + BA$ 13. If $\begin{bmatrix} -2 & -3 \\ -3 & -4 \end{bmatrix}$ is the inverse of $\begin{bmatrix} 4 & n \\ m & 2 \end{bmatrix}$, then find m and n.

14. If the matrix equation
$$A^3 = I$$
 is true and A^{-1} exists, then $A^{-1} = a A^2 A^2 b A c A^3 d I e A^6$

15. If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
, then find the element in the second row and the third column of A^{-1} .

- 16. Given the matrix equation AXC = B. If A^{-1} and C^{-1} exist, then X =
 - (a) $A^{-1}BC^{-1}$ (b) $BA^{-1}C^{-1}$
 - (c) $A^{-1}C^{-1}B$
 - (d) $BC^{-1}A^{-1}$
 - (e) $C^{-1}BA^{-1}$

17. The solution set of the matrix equation $\begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ is given by:

(a) $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ (b) $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ (c) $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -\frac{2}{7} & \frac{3}{7} \\ \frac{1}{7} & \frac{-2}{7} \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

(d)
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \begin{bmatrix} -\frac{2}{7} & \frac{3}{7} \\ \frac{1}{7} & \frac{-2}{7} \end{bmatrix}$$

(e) $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 1 \\ \frac{1}{3} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

- 18. If $A = \begin{bmatrix} 1 & 1 & 4 \\ 2 & 3 & 6 \\ -1 & -1 & 2 \end{bmatrix}$, then find the sum of the elements in the second row of A^{-1} .
- 19. Suppose that $A = \begin{bmatrix} 3 & 2 \\ 2 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 22 \\ 10 \end{bmatrix}$, and $X = \begin{bmatrix} x \\ y \end{bmatrix}$. If AX = B, then the matrix X is equal to:

(a)
$$\begin{bmatrix} 2 & 2 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} 22 \\ 10 \end{bmatrix}$$

(b)
$$\begin{bmatrix} -2 & 2 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} 22 \\ 10 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 11 \\ 5 \end{bmatrix} \begin{bmatrix} 2 & -2 \\ -2 & 3 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 2 & -2 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 11 \\ 5 \end{bmatrix}$$

(e)
$$\begin{bmatrix} 22 \\ 10 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & \frac{3}{2} \end{bmatrix}$$

- 20. Which of the following is TRUE for square matrices A and B which are the same size?
 - (a) If AB = O, then A = O or B = O.
 - (b) $(A+B)^2 = A^2 + 2AB + B^2$
 - (c) $(A B)(A + B) = A^2 B^2$
 - (d) $(AB)^{-1} = B^{-1}A^{-1}$
 - (e) A(BC) = (BA)C
- 21. If $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, then find the element in row 2 column 3 of A^{-1} .

22. If the matrix *M* and its inverse are given by $M = \begin{bmatrix} 2 & 2 & -1 \\ 0 & 3 & -1 \\ -1 & -2 & 1 \end{bmatrix}$,

$$M^{-1} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ x & y & z \end{bmatrix}, \text{ then find } x + y + z.$$

4 Section 10.4

- 1. If A and B are two matrices of order 4 such that |A| = 4 and |B| = 5, then find the value of $|AB| 5|B^{-1}|$.
- 2. Find the value of the determinant $\begin{vmatrix} 2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 1 & 0 & 0 & 1 \end{vmatrix}$.

3. Find the minor and the cofactor of the element 0 in the matrix $\begin{bmatrix} -3 & 2 & 1 \\ -5 & 6 & 0 \\ -2 & -1 & 3 \end{bmatrix}$.

- 4. If A and B are two matrices of order 3×3 and |A| = 4 and |B| = 5, then find the value of $2|A| |2B^{-1}|$.
- 5. Find the value of the determinant $\begin{vmatrix} 4 & -1 & 3 \\ 3 & 1 & 2 \\ 1 & -1 & 1 \end{vmatrix}$.
- 6. If $M = \begin{bmatrix} 5 & 6 \\ 4 & 0 \end{bmatrix}$ and I is the 2 × 2 identity matrix, then find the sum of the values of x which satisfy det (M xI) = 0.
- 7. If Z is a 5 × 5 matrix and |Z| = 3, then find $|2Z^{-1}|$.
- 8. Find the value of the determinant $\begin{vmatrix} -1 & 2 & 2 & 3 \\ 0 & 2 & 3 & 4 \\ 0 & 2 & 6 & 6 \\ 2 & -4 & -4 & -2 \end{vmatrix}$.
- 9. If A is a square matrix with inverse A^{-1} and transpose A^{T} , then which one of the following is always TRUE?
- (a) $|A^{T}| = -|A|$ (b) $|AA^{-1}| = 1$ (c) $|AA^{T}| = 1$ (d) $|A^{-1}| = |A|$ (e) $|A^{-1}| = |A^{T}|$ 10. If $\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ 2 & 3 & 4 \end{vmatrix} = 3$, then find $\begin{vmatrix} 2 & 3 & 4 \\ x - 4 & y - 6 & z - 8 \\ -2 & -2 & -2 \end{vmatrix}$. 11. Find the solution set of $\begin{vmatrix} x & x & 0 \\ 2 & 1 + x & 2 \\ -1 & 0 & x \end{vmatrix} = 0.$

12. Find the value of
$$\begin{vmatrix} a & b & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & c & d \end{vmatrix}$$
.
13. If $A = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$, $B = \begin{vmatrix} c & -2b & -3a \\ f & -2e & -3d \\ i & -2h & -3g \end{vmatrix}$ and $|A| = 2$, then find $|B|$.
14. Find the determinant $\begin{vmatrix} x & 2 & 4 \\ 1 & 3 & 0 \\ 1 - 2x & -1 & -8 \end{vmatrix}$.

15. If a 3×3 matrix A with elements a_{ij} has $a_{11} = -1$, $a_{21} = 3$, and $a_{31} = 4$, and the minors of a_{11} , a_{21} , and a_{31} are 5, -2, 3 respectively, then find |A|.

16. Find the determinant
$$\begin{vmatrix} \sin \theta & -\cos \theta \\ -\sin 2\theta & \cos 2\theta \end{vmatrix}$$
.
17. Find the cofactor of x in $\begin{vmatrix} -3 & 0 & -1 & 0 \\ 2 & 4 & 6 & 2 \\ 0 & x & -2 & 4 \\ 1 & 3 & 1 & 0 \end{vmatrix}$.
18. If $A = \begin{bmatrix} 1 & 2 & 3 \\ a & b & c \\ x & y & z \end{bmatrix}$, $B = \begin{bmatrix} -1 & -2 & -6 \\ 3a & 3b & 6c \\ x & y & 2z \end{bmatrix}$, and $C = \begin{bmatrix} 2 & 4 & 6 \\ 2x & 2y & 2z \\ 2a & 2b & 2c \end{bmatrix}$, then
(a) $B = -6A, C = 2A$
(b) $|B| = -6|A|, |C| = -8|A|$

(b)
$$|B| = -6 |A|$$
, $|C| = -8 |A|$
(c) $|B| = -6 |A|$, $|C| = -2 |A|$
(d) $|B| = 6 |A|$, $|C| = 8 |A|$
(e) $|B| = -8 |A|$, $|C| = -2 |A|$

19. If A is a 3×3 matrix, then find |2A| in terms of |A|.

20. Find the cofactor of he element in the third row and second column of $A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & 4 \\ 1 & 2 & 6 \end{bmatrix}.$ 21. If $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix}$, then find |A|.

22. If
$$B = \begin{bmatrix} 4 & 2 & -1 \end{bmatrix}$$
 and $A = \begin{bmatrix} 1 \\ -3 \\ 1 \end{bmatrix}$, then find $|A^T B^T|$.
23. Find the solution set of $\begin{vmatrix} 1 & 0 & 0 \\ 0 & x & 1 \\ 0 & 1 & x \end{vmatrix} = 0.$

24. Let A and B be 3×3 matrices. Which one of the following is FALSE?

(a)
$$(AB)^{-1} = B^{-1}A^{-1}$$
.
(b) $(|A|+1)^2 = |A|^2 + 2|A| + 1$.
(c) $|A^T| = |A|$
(d) $|A^{-1}| = |A|$.
(e) $|3A| = 27|A|$.
(f) If $A = \begin{bmatrix} 0 & 1 & 2\\ 3 & 0 & 1 \end{bmatrix}$, then find Matan

25. If $A = \begin{bmatrix} 3 & 0 & 1 \\ 1 & -1 & 1 \end{bmatrix}$, then find M_{21} and C_{13} .

26. Find the sum of all values of x for which $\begin{vmatrix} -1 & 3 & 0 \\ 0 & 2 & x \\ 1 & -x & 1 \end{vmatrix} = 0.$

27. If
$$\begin{vmatrix} 3 & x & u \\ 3 & y & v \\ 3 & z & w \end{vmatrix} = 1$$
, then find $\begin{vmatrix} x & z & y \\ 2 & 2 & 2 \\ u & w & v \end{vmatrix}$.

28. If A is 5×5 and |A| = 4, then find the value of $2|A| + |2A^{-1}|$.

•

29. If
$$A = \begin{bmatrix} 3 & -1 \\ 2 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$, then find $|(AB)^T|$
30. If $\begin{vmatrix} 1 & 0 & 1 \\ 0 & \sin\theta & \cos\theta \\ \sec\theta & -\cos\theta & \sin\theta \end{vmatrix} = 0, 0 \le \theta \le \pi$, then find θ .
31. The determinant $\begin{vmatrix} 1 & 2 & 3 \\ a & b & c \\ 2+a & 4+b & 6+c \end{vmatrix}$ is

- (a) equal to 0 only if a = b = c = 0.
- (b) equal to 0 only if a = -b and b = -c.
- (c) never equal to 0.
- (d) always equal to 0.
- (e) equal to zero only if a = -2, b = -4, and c = -6.

32. If A is a 4×4 matrix and $ A = \frac{3}{2}$, then find $\frac{1}{4} -$	2A .
33. If $A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$, <i>I</i> is the 2 × 2 identity matrix, t	hen find $ A - 3I $.
34. Find the minor M_{23} of the element x in the matrix	$\begin{bmatrix} \cos 2\theta & -\sin 2\theta & 1\\ 1 & 1 & x\\ -\sin \theta & \cos \theta & 0 \end{bmatrix}.$