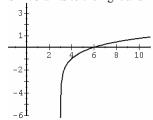

- 10. $\ln x = -3 \Rightarrow e^{-3} = x$
- $16. 2^x = y \Rightarrow \log_2 y = x$
- 22. $\log_{3/2} \frac{8}{27} = -3 \text{ because } \left(\frac{3}{2}\right)^{-3} = \left(\frac{2}{3}\right)^3 = \frac{8}{27}$
- 38. $y = \log_{7/3} x$

44. $J(x) = \ln\left(\frac{x-3}{x}\right)$

$$\frac{x-3}{x} > 0$$


The critical values are 3 and 0.

The quotient is positive.

$$x < 0 \text{ or } x > 3$$

The domain is $(-\infty, 0) \cup (3, \infty)$.

56. Shift 3 units to the right and 1 unit down

58. The graph of $f(x) = \ln x + 3$ is the graph of $y = \ln x$ shifted 3 units up.

The graph of $g(x) = \ln(x-3)$ is the graph of $y = \ln x$ shifted 3 units to the right.

The graph of $h(x) = \ln(3-x)$ is the graph of $y = \ln x$ shifted 3 units to the left and reflected across the y-axis.

The graph of $k(x) = -\log_5(x+3)$ is the graph of $y = \log_5 x$ reflected across the x-axis and shifted left 3 units.

- a. k(x)
- **b.** h(x)
- c. g(x)
- **d.** f(x)
- **79.** The domain of the inverse is the range of the function.

Range of f: $\{y \mid -1 \le y \le 1\}$.

The domain of the function is the range of the inverse.

Range of g: all real numbers.