King Fahd University of petroleum and minerals Department of Physics

PHYS 306 Electricity and Magnetism II Semester (142)

(1) <u>Catalogue Course Description</u>

Phys 306 ELECTRICITY AND MAGNETISM II

(3-0-3)

Course Description: A continuation of PHYS 305. Topics covered include: magnetic materials ; Maxwell's equations; the special theory of relativity; applications of Maxwell's equations; physics of plasmas; wave guides and resonance cavities; simple radiating systems and diffraction; the Lienard-Wiechert potentials.

Prerequisite: PHYS 305

(2) <u>Text Book:</u>

Introduction to Electrodynamics Theory", D. J. Griffiths, (3rd Edition Pearson, 2008)

(3) <u>Reference Books</u>

- 1- "Classical Electricity and Magnetism", W K H Panofsky and M Phillips, (2nd edition, Addison-Wesley, Reading MA 1962)
- 2- "Electricity and Magnetism" Edward M. Purcell. Berkley Physics Course –Vol. 2. (McGraw-Hill, NY 1963)
- 3- "Electromagnetic Fields & Waves" by P. Lorrain & D. Corson (2nd Edition, W.H. Freeman, 1970)
- 4- "The Feynman Lectures on Physics", especially Vol-II (<u>http://www.feynmanlectures.caltech.edu/</u>)
- 5- "Classical Electrodynamics", J.D. Jackson, (3rd Edition John Wiley & sons, Inc. 1999)
- 6- "Schaum's outline Series Theory and Problems of Electromagnetic", by J. A. Edminister (McGraw-Hill book company, 1979)

(4) **Evaluation:**

15%
30%
30%
15%
10%

(5) Syllabus:

Physics 306 Lecture Schedule Semester (142)

Wk.	Chapter	TOPICS
#		
1	1-6	Review of phys-305
2	7	Electrodynamics, (*)
3	7	Electrodynamics
4	8	Conservation Laws
5	9	Electromagnetic Waves
6	9	Electromagnetic Waves
7	9	Electromagnetic Waves

Midterm on Wednesday 30?? Jumada-I, 1435H (18th of March) at 7.00 p.m.

8	9	Electromagnetic Waves
		Midterm Vacation
9	10	Potentials and Fields
10	10	Potentials and Fields
11	11	Radiation
12	12	Electrodynamics and Relativity, (**)
13	12	Electrodynamics and Relativity
14	12	Electrodynamics and Relativity
15	12	Electrodynamics and Relativity
		Final Exam (Comprehensive)

Notes:

- (*) Term paper title & abstract are due by Week-2 for Instructor endorsement
- (**) Term paper presentation due at the beginning of Week-12

Please visit me for consultation on term papers.

(6) <u>Learning Outcomes:</u>

	Course learning outcomes			
1	Appreciate Maxwell's Equations in a way that connects to electromagnetic waves, gauge transformations,			
	radiation and relativistic electrodynamics			
2	Explain the concept of transport of electromagnetic energy and momentum.			
3	Understand the ideas behind electromagnetic wave propagation.			
4	Figure out the retarded potentials in situation involving time-dependent charge and current distributions.			
5	Solve problems related electromagnetic radiation.			
6	Know and apply the basic principles of special relativity and the concept of Lorentz transformations and			
	solve related problems.			
7	Get acquainted with using computers as a pedagogic tool to comprehend electricity and magnetism.			
8	Develop problem-solving skills in the main subjects of the course.			

INSTRUCTOR: Dr. Zain Yamani <u>http://faculty.kfupm.edu.sa/phys/zhyamani/</u> <u>zhyamani@kfupm.edu.sa</u> Office: 15-3102 Office phone 4363 Mobile: 0504608515