Physics-305

Homework Set (5)

This homework set is due on Thursday, $29^{\text {th }}$ Muharram, 1437 (Nov. 12 ${ }^{\text {th }}$, 2015) at 10.00 p.m.

Question \#1:

This question is intended to walk you through the method of Multipole Expansion. This method is most useful when you like to find the potential far away from a localized set of charges.
Develop a systematic expansion for the potential of an arbitrary localized charge distribution, in powers by $1 /|\mathbf{r}|$, where \mathbf{r} is the position vector from a chosen origin.
a- Define the relevant variables through a sketch.
b- Starting from the general integral relation between potential and electrostatic charge density, show $\left({ }^{*}\right)$ that the potential can be expressed as a sum in $r^{-(n+1)}$ containing integrals over Legendre polynomials.
c- Explicitly express the so-called Monopole term. Argue how that for a source that is merely a point charge at the origin, the Monopole term is the exact potential.
d- Explicitly express the so-called Dipole term, and identify the so-called Dipole Moment.
e- Argue when it is that the Dipole term is the dominant term in the expansion for the potential of a charge distribution.
f- Explain when this term is not dependent on your choice of origin of coordinates.
g- Draw the electric field for a perfect (point) dipole and compare it with that of a physical (real) dipole.
(*) You are free to solve from your textbook; however you need to explain your steps, oftentimes more than Griffiths does.

Question \#2:

A point charge " q " is situated a distance " a " from the center of a hallow grounded conducting sphere of radius "R", such $a<R$. Find the potential inside the sphere.

Question \#3:

In class, we separated the radial from the angular dependence solution for the azimuthally independent electrostatic potential satisfying Laplace's equation.The angular solution satisfies Chapter-3's equation 60 of your textbook. They turn out to be the Legendre polynomials $\left\{\mathrm{P}_{\mathrm{l}}(\cos \theta)\right.$.
a- Use the Rodrigues formula to express $\mathrm{P}_{3}(\mathrm{x})$ and $\mathrm{P}_{4}(\mathrm{x})$
b- Use a computer package to plot $\mathrm{P}_{3}(\mathrm{x}), \mathrm{P}_{4}(\mathrm{x})$, and $\mathrm{P}_{3}(\mathrm{x}) \mathrm{P}_{4}(\mathrm{x})$ over the interval [-1,1], on the same graph.
c- Compute through direct analytical integration that $\mathrm{P}_{3}(\mathrm{x})$ is orthogonal to $\mathrm{P}_{4}(\mathrm{x})$ over [-1,1].

Question \#4:

An infinitely long rectangular metal pipe (sides "a" and "b"; $a=4 b$) is grounded, but one end, at $x=0$, is maintained at a specific potential $\mathrm{V}_{\mathrm{o}}(\mathrm{y}, \mathrm{z})$.
a- Sketch the problem.
b- Find the potential inside the pipe.
c- For $\mathrm{x}>5$ a, describe how you can evaluate a good approximation for the potential by summing just a few terms.

Question \#5:

Textbook chapter-3, problem-19. Furthermore, use a computer package to plot the angular distribution of the charge density as a spherical plot (where the surface element distance from the origin, at a particular angle, represents the magnitude of the charge density at that angular position on the sphere).

Work hard on this homework set for it is heavily weighted

