Physics-305

Homework Set (3)

This homework set is due on Thursday, $24^{\text {st }}$ of Dhul-Hijjah, 1436 (Oct. 8 ${ }^{\text {th }}$, 2015) at 10.00 p.m. [slip under my Office (15-3100) door, if needed].

For this homework set feel free to discuss with your colleagues, but make sure that your submission is your own, rather than copying from someone else's work!

Start each question on a new page. Please solve fully and clearly, state assumptions, circle final answers, and comment wisely (when applicable).

Question \#1:

A thin rod of length (L) is uniformly charged $\left(\lambda=\lambda_{0}\right)$ with one end at the origin lies in the horizontal ($x-y$) plane. The rod makes an angle $+30^{\circ}$ with the +ve x -axis.

You are interested in finding the electric field at points on the y-axis.
a- Sketch the problem.
b- Find integral expressions for the x - and y - components of the electric field at a general point $(0, \eta)$ on the y-axis.
c- Compute the electric field for the (special) case $\eta=L$; that is, at the point (0,L).
d- Use symmetry arguments to confirm that the results found in part-c are as expected, by looking at the electric field on the normal bisector of a uniformly charged rod.

Hint: feel free to use computer packages to calculate integrals, if needed. In fact, you are encouraged to do so.

Question \#2:

Calculate the electrostatic potential inside and outside a uniformly charged spherical shell.

Hint: read the example in your textbook.

Question \#3:

Calculate the Madelung constant for an infinite (1-D) chain consisting of alternative charges ($\pm \mathrm{q}$) with spacing (a).

Hint: you first need to figure out what a Madelung constant is.

Question \#4:

What is the force of repulsion between the northern hemisphere and the southern hemisphere of a metal sphere of radius R that carries a total charge Q ?

Question \#5:

Textbook: chapter-2 problem-32

Question \#6:

Textbook: chapter-2 problem-39

