Physics-305

Homework Set (2)

This homework set is due on Thursday, $4^{\text {th }}$ Dhul-Hijjah, 1436 (Sept. 17 ${ }^{\text {th }}, 2015$) at 10.00 p.m. [slip under my Office (15-3100) door, if needed].

For this homework set in particular, please do not discuss with your colleagues; rather, e-mail me or call me if you need help.

Start each question on a new page. Please solve fully and clearly, state assumptions, circle final answers, and comment wisely (when applicable).

Question \#1:

A function in Cartesian coordinates is described by:
$f(x)=\left(3 x y^{\wedge} 2\right) x-h a t-\left(y^{2}\right) y$-hat $-\left(x z^{3}\right) z-$ hat
a- Analytically calculate the curl of f.
b- Sketch the parallelepiped with corners at: $(0,0,0),(4,0,0),(4,0,2),(4,3,2)$, $(4,3,0),(0,3,2),(0,3,0)$, and $(0,0,2)$.
c- Confirm Stokes' theorem, applied to f on the parallelepiped "top" and "front" surfaces.

Question \#2:

Design a divergence-less vector field described, in spherical polar coordinates, to have a value of 10θ-hat at the point $(1, \pi / 2, \pi / 2)$, and a curl of 8ϕ-hat at the same point.
Use a suitable computer package to show how this vector field looks like close to the Cartesian coordinate ($0,1,0$).

Question \#3:

Your textbook Chapter 1-Problem 47

Question \#4:

Your textbook Chapter 1-Problem 49 [one method is sufficient]

Question \#5:

If the constant electric field in the below has a magnitude $\mathrm{E}=25 \mathrm{~N} / \mathrm{C}$, calculate the electric flux through the curved surface of the hemisphere (half a sphere of radius $\mathrm{R}=$ 5.0 cm).

