Physics-305

Homework Set (1)

This homework set is due on Monday, $16^{\text {th }}$ Dhul-Qi'dah, 1436 (Aug. $31^{\text {st }}, 2015$) at 10.00 p.m. [slip under my Office (15-3100) door, if needed]

For this homework set in particular, please do not discuss with your colleagues; rather, e-mail me or call me if you need help

Start each question on a new page. Please solve fully and clearly, state assumptions, circle final answers, and comment wisely (when applicable).

Question \#1:

Two point charges, $q_{1}=+4 \mu \mathrm{C}$ and $q_{2}=-2 \mu \mathrm{C}$, are fixed on the x axis, as shown in Figure 1. Which of the following statements regarding the electric field produced by the two charges on the x axis is CORRECT?

Figure 1
In which direction does the electric field point at point-1, at point-2 and in between?

Question \#2:

Two charged particles are fixed in the $x y$ plane as shown in Figure 2. Take $q_{l}=10$ $\mathrm{nC}, q_{2}=-30 \mathrm{nC}$, and $a=1.0 \mathrm{~m}$. What is the electric potential due to these two particles at the origin?

Figure 2

Question \#3:
A certain resistor dissipates 0.50 W when connected to a $3.0-\mathrm{V}$ potential difference. How much will the same resistor dissipate when connected to a $1.0-\mathrm{V}$ potential difference?

Question \#4:

In order to store a total of 0.040 J of energy in the two identical capacitors shown in Figure 3. What should the capacitance (C) be?

Figure 3

Question \#5:

A $10-\Omega$ resistor has a constant current passing through it. If 1200 C of charge flow through it in 4.0 minutes, what is the potential difference across the resistor?

Question \#6:

Resistor 1 has twice the resistance of resistor 2. They are connected in parallel to a battery. If the power dissipated in R_{1} is P_{1} and the power dissipated in R_{2} is P_{2}, what is P_{1} / P_{2} ?

Question \#7:

Find the current in 8.00- Ω resistor in the circuit shown in Figure 4?

Figure 4

Question \#8:

The capacitor shown in Figure 5 is initially charged. Switch S is closed at time $t=0$. At the end of 10.0 ms , the charge on the capacitor is one third the initial value. If the resistor $\mathrm{R}=910$ ohm, what must the capacitance be?

Figure 5

