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Classical Theory of Rayleigh and
Raman Scattering
Se non è vero, è molto ben trovato.

Giordano Bruno

3.1 INTRODUCTION

We now consider an approach to the theory of Rayleigh and Raman scattering in which
both the electromagnetic radiation and the material system are treated classically. Although
the classical theory cannot deal with all aspects of Rayleigh and Raman scattering it does
provide useful insights into some facets of such scattering, particularly the frequency
dependence, and also some aspects of the selection rules.

3.2 FIRST-ORDER INDUCED ELECTRIC DIPOLE

In this section we develop in more detail the procedures outlined in Chapter 2, Section 2.3,
confining ourselves to Rayleigh scattering and vibrational Raman scattering. Our objective
is to calculate for a molecule the frequency-dependent linear induced electric dipole
vectors p�1�, making use of the relationship

p�1� D a Ð E �3.2.1�
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where E is the electric field vector of the incident, plane wave, monochromatic radiation
of frequency ω1, and a is the polarizability tensor‡ of the molecule. The polarizability
tensor will, in general, be a function of the nuclear coordinates and hence of the molecular
vibrational frequencies. We may therefore obtain the frequency-dependent induced electric
dipole vectors p�1�, by introducing into eq. (3.2.1) the frequency dependence of E and a.
The amplitude of a linear induced electric dipole of a particular frequency enables the
scattered intensity to be calculated using eq. (2.2.1).

We shall consider the scattering system to be one molecule which is free to vibrate, but
does not rotate; that is, the molecule is space-fixed in its equilibrium configuration, but the
nuclei may vibrate about their equilibrium positions. The variation of the polarizability
with vibrations of the molecule can be expressed by expanding each component ˛�� of
the polarizability tensor a in a Taylor series with respect to the normal coordinates of
vibration, as follows:
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where �˛���0 is the value of ˛�� at the equilibrium configuration, Qk, Ql . . . are normal
coordinates of vibration associated with the molecular vibrational frequencies ωk , ωl . . . ,
and the summations are over all normal coordinates. The subscript ‘0’ on the derivatives
indicates that these are to be taken at the equilibrium configuration. We shall, for the
time being, neglect the terms which involve powers of Q higher than the first. This
approximation is often referred to as the electrical harmonic approximation.§ We shall
also fix our attention initially on one normal mode of vibration Qk . We may then write
eq. (3.2.2) in the special form

�˛���k D �˛���0 C �˛0
���kQk �3.2.3�

where
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0

�3.2.4�

The �˛0
���k are components of a new tensor a0

k which we shall call a derived polar-
izability tensor, as all its components are polarizability derivatives with respect to the
normal coordinate Qk . The properties of the components of the derived polarizability
tensor differ in some respects from �˛���0, the components of the equilibrium polariz-
ability tensor �a�0, as we shall see subsequently. As eq. (3.2.3) is valid for all tensor
components we may write

ak D a0 C a0
kQk �3.2.5�

where ak is a tensor with components �˛���k and Qk , a scalar quantity, multiplies all
components of a0

k . Assuming simple harmonic motion, that is, mechanical harmonicity§,

‡ Chapter A14 treats the polarizability tensor.
§ Mechanical harmonicity in a molecular vibration means that the restoring force is proportional to the first

power of the displacement Qk . Similarly, electrical harmonicity means that the variation of the polarizability
in a vibration is proportional to the first power of Qk .
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the time dependence of Qk is given by

Qk D Qk0 cos�ωkt C υk� �3.2.6�

where Qk0 is the normal coordinate amplitude and υk a phase factor. Combining eq. (3.2.6)
with eq. (3.2.5) we obtain the time dependence of the polarizability tensor resulting from
the kth molecular vibration:

ak D a0 C a0
kQk0 cos�ωkt C υk� �3.2.7�

We now introduce into eq. (3.2.1) the frequency dependence‡ of E given by

E D E0 cos ω1t �3.2.8�

and of ak given by eq. (3.2.7). We then obtain

p�1� D a0E0 cos ω1t C a0
kE0Qk0 cos�ωkt C υ� cos ω1t �3.2.9�

Using the trigonometric identity

cos A cos B D 1
2fcos�A C B� C cos�A � B�g �3.2.10�

the second term in eq. (3.2.9) may be reformulated and we may then write the expression
for p�1� in the form

p�1� D p�1��ω1� C p�1��ω1 � ωk� C p�1��ω1 C ωk� �3.2.11�

Here
p�1��ω1� D pRay

0 cos ω1t �3.2.12�

with
pRay

0 D aRay Ð E0 �3.2.13�

and
aRay D a0 �3.2.14�

Also
p�1��ω1 š ωk� D pRam

k0
cos�ω1 š ωk š υk�t �3.2.15�

with
pRam

k0
D aRam

k Ð E0 �3.2.16�

and
aRam

k D 1
2a0

kQk �3.2.17�

The cosine functions in eqs. (3.2.12) and (3.2.15) define the frequencies of the induced
dipoles; and eqs. (3.2.14) and (3.2.17) define the classical Rayleigh and Raman scattering
tensors introduced in eqs. (2.3.8) and (2.3.9) in Chapter 2.

‡ Chapter A17 treats the frequency dependence of E.
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We have used the familiar trigonometric representation‡ of sinusoidal phenomena in this
treatment of the classical theory. However, as the exponential representation‡ is used in
all subsequent treatments, the appropriate equations are repeated below in the exponential
representation:
for eq. 3.2.6

Qk D 1
2Qk0fexp �i�ωkt C υk� C exp i�ωkt C υk�g �3.2.18�

for eq. 3.2.8
E D 1

2 E0fexp �iω1t C exp iω1tg �3.2.19�

for eq. 3.2.12
p�1��ω1� D 1

2pRay
0 fexp �iω1t C exp iω1tg �3.2.20�

for eq. 3.2.15

p�1��ω1 š ωk� D 1
2pRam

0 fexp �i[�ω1 š ωk�t š υk] C exp i[�ω1 š ωk�t š υk]g �3.2.21�

3.3 FREQUENCY DEPENDENCE OF THE FIRST-ORDER
INDUCED ELECTRIC DIPOLE

We see from eq. (3.2.11) that the linear induced electric dipole has three distinct frequency
components: p�1��ω1�, which gives rise to radiation at ω1, and so accounts for Rayleigh
scattering; p�1��ω1 � ωk�, which gives rise to radiation at ω1 � ωk , and so accounts for
Stokes Raman scattering; and p�1��ω1 C ωk�, which gives rise to radiation at ω1 C ωk ,
and so accounts for anti-Stokes Raman scattering. It should be noted that, whereas the
induced dipole p�1��ω1� has the same phase as that of the incident field, the induced
dipoles p�1��ω1 š ωk� are shifted in phase relative to the incident field by υk . The quantity
υk defines the phase of the normal vibration Qk relative to the field and will be different
for different molecules.

The time dependence of the electric field of the electromagnetic radiation of frequency
ω1 and the linear induced electric dipoles p�1� which it can produce are compared in
Fig. 3.1. In Fig. 3.1(a) the scattering molecule is not vibrating �ωk D 0� and the total
induced electric dipole then has only one frequency component p�1��ω1� In Fig. 3.1(b),
the scattering molecule is vibrating with frequency ωk and the total induced electric dipole
is resolvable into three frequency components:

p�1��ω1�, p�1��ω1 � ωk� and p�1��ω1 C ωk�

This relatively simple classical treatment provides us with a useful qualitative picture
of the mechanisms of Rayleigh and Raman scattering. Rayleigh scattering arises from the
electric dipole oscillating at ω1 induced in the molecule by the electric field of the incident
radiation, which itself oscillates at ω1. Raman scattering arises from the electric dipoles
oscillating at ω1 š ωk , which are produced when the electric dipole oscillating at ω1 is

‡ Chapter A17 treats the trigonometric and exponential representations of sinusoidal phenomena such as
electromagnetic waves.
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Figure 3.1 Time dependence of the linear induced dipoles p�1� produced by electromag-
netic radiation of frequency ω1: (a) scattering molecule not vibrating ωk D 0: p�1� D p�1��ω1�;
(b) scattering molecule vibrating with frequency ωk : p�1� D p�1��ω1� C p�1��ω1 � ωk� C
p�1��ω1 C ωk�.

modulated by the molecule oscillating at frequency ωk . The necessary coupling between
the nuclear motions and the electric field is provided by the electrons whose rearrangement
with nuclear motion impose a harmonic variation on the polarizability. Alternatively, we
may use a musical analogy and say that the frequencies observed in Raman scattering are
beat frequencies between the radiation frequency ω1 and the molecular frequency ωk .

3.4 CLASSICAL SCATTERING TENSORS aRay AND aRam
k

It is evident that the necessary condition for Rayleigh scattering is that aRay be non-zero.
As all molecules are polarizable to a greater or lesser extent, the classical equilibrium
polarizability tensor a0 will always have some non-zero components and so aRay is always
non-zero. Thus all molecules exhibit Rayleigh scattering.

The corresponding necessary condition for Raman scattering associated with a molec-
ular frequency ωk is that aRam

k be non-zero. This requires that at least one of the compo-
nents �˛0

���k of the derived polarizability tensor a0
k is non-zero. We recall from eq. (3.2.4)

that �˛0
���k is the derivative of the �� component of the polarizability tensor with respect

to the normal coordinate of vibration Qk , taken at the equilibrium position. Thus, the
condition for Raman activity is that, for at least one component of the polarizability
tensor, a plot of that component against the normal coordinate must have a non-zero
gradient at the equilibrium position.
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3.5 SELECTION RULES FOR FUNDAMENTAL VIBRATIONS

3.5.1 General considerations

In principle we can now determine the Raman activity of vibrations in particular molecules.
However, the selection rules in their classical form, although appearing deceptively simple
in concept, become progressively more difficult to apply as the complexity of the molecule
increases. The ensuing discussion of a few specific cases will illustrate this.

In dealing with these specific cases it will be instructive to consider the infrared activity
as well as the Raman activity so that comparisons can be made. We note that according
to classical theory the condition for vibrational infrared activity is that at least one of the
dipole moment component derivatives with respect to the normal coordinate Qk , taken
at the equilibrium position, should be non-zero. This means that, for at least one of the
components of the dipole moment vector, a plot of that component against the normal
coordinate must have a non-zero gradient at the equilibrium position.

3.5.2 Diatomic molecules

We shall consider first a homonuclear diatomic molecule A2 which has just one mode of
vibration. Such a molecule has no permanent dipole moment in the equilibrium position
because of the symmetry of the electron distribution. This symmetry does not change
with small changes in the internuclear separation, and so the dipole remains zero during
a vibration and hence the derivative is zero. The vibration is therefore infrared inactive.
We turn now to the question of Raman activity. Clearly the molecule has a non-zero
polarizability, and we may represent this by a polarizability ellipsoid‡, so oriented at
equilibrium that it has one principal axis along the bond direction and its other two
principal axes at right angles to the bond direction. Such an ellipsoid is defined by a
maximum of three polarizability components. However, as we are considering a � bond,
the polarizability will be the same in all directions at right angles to the bond, and the
polarizability tensor is then defined by just two components which we may designate
as ˛jj, the polarizability along the bond, and ˛?, the polarizability at right angles to
the bond. For a given internuclear separation the mean polarizability a is then given
by 1

3 �˛jj C 2˛?� and the anisotropy � by �˛jj � ˛?�. We have now to ask how these
polarizability components change during the vibration of the A2 molecule. It is not as
easy as many texts would imply to deduce conclusively the properties of �∂˛jj/∂Qk�0 and
�∂˛?/∂Qk�0 from a priori considerations of how electron distributions are affected by a
change of internuclear distance.

Let us consider the specific case of the hydrogen molecule H2. We can see that as the
internuclear separation tends to zero the polarizability tends towards that of a helium atom,
and as the internuclear separation tends to infinity the polarizability tends to that of two
hydrogen atoms. As we know that the polarizability of two hydrogen atoms is greater than
that of a helium atom, we can infer that, in general terms, the polarizability does change
with internuclear separation. However, these limiting cases do not define the form of the

‡ Chapter A14 treats the polarizability ellipsoid, and also the mean polarizability and the anisotropy.
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Figure 3.2 Polarizability and internuclear distance in the H2 molecule with limiting values
for zero and infinite internuclear distances.
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Figure 3.3 Plots of ˛, ˛jj, and ˛? as functions of R, the internuclear distance, for the H2

molecule. The mean polarizability ˛ is shown only up to R ³ 390 pm so that the very close
curves for ˛jj and ˛? above this distance remain distinct.

variation of the polarizability with internuclear separation, and in principle the derivative
at the equilibrium internuclear separation could be positive, negative, or zero (Fig. 3.2).
Also, as atoms have isotropic polarizabilities with a 6D 0 and � D 0, whereas near the
equilibrium position in H2 we have a 6D 0 and � 6D 0, the forms of the variation of a and
� with internuclear separation in H2 must be different. For the fullest information, we must
appeal to quantum mechanical calculations to ascertain the variation of the polarizability
components with internuclear separation in the neighbourhood of the equilibrium position.
The results of a typical calculation (Rychlewski, 1980) are presented in Fig. 3.3 and show
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Figure 3.4 Variation of dipole moment with internuclear distance in a diatomic molecule
AB (here the dipole moment derivative at the equilibrium separation is negative).

that both �∂˛jj/∂Q�0 and �∂˛?/∂Q�0 are non-zero and positive for values of the internuclear
distance R up to about R D 175 pm. Further, the calculations show that �∂˛jj/∂Q�0 >
�∂˛?/∂Q�0 and so �∂�/∂Q�0 is also non-zero and positive up to about R D 175 pm.

These results for H2 may be used to guide us towards some generalizations for other
homonuclear diatomic molecules. In such molecules, we may also reasonably expect
�∂˛jj/∂Q�0 and �∂�/∂Q�0 to be non-zero and of different magnitudes and hence �∂a/∂Q�0
and �∂�/∂Q�0 to be non-zero. Thus, the vibrations of A2 diatomic molecules will be
Raman active. However the signs and relative magnitudes of these derivatives need not
necessarily follow the pattern in H2.

We next consider the case of a heteronuclear diatomic molecule AB which also has
just one mode of vibration. The arguments given above for polarizability changes in A2
molecules can be expected to apply to AB molecules, and thus the vibration will be Raman
active. The molecule AB will necessarily have a permanent dipole moment because there
will be an asymmetry in its electron distribution. As the dipole moment must be zero for
both infinitely large and zero internuclear separations, the normal form of the variation
of the dipole moment component along the bond direction with internuclear distance
will be as shown in Fig. 3.4. The components of the dipole at right angles to the bond
direction are, of course, always zero. For infrared activity, the maximum dipole moment
must occur at an internuclear distance different from the equilibrium distance, so that the
derivative at the equilibrium position is non-zero. This is the case for all heteronuclear
diatomic molecules and thus the vibration in AB molecules will be infrared active. The
form of the plot of dipole moment against internuclear distance will, however, vary from
one molecule to another, and thus the magnitude and sign of the derivative will also vary
considerably. The A2 and AB cases are compared in Fig. 3.5.

3.5.3 Polyatomic molecules

In polyatomic molecules, if we regard the total dipole moment as made up of contributions
from individual bond dipoles (at least to a first approximation), then we may regard each
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Figure 3.5 Comparison of polarizability and dipole moment variations in the neighbour-
hood of the equilibrium position and vibrational Raman and infrared activities for an A2 and
an AB molecule.

heteronuclear bond as having a non-zero bond dipole derivative at the equilibrium position
and combine such derivatives vectorially to determine infrared activities in particular
modes of vibration, taking into account the relative phases of the motions in each bond.

Similarly, we may regard the total molecular polarizability as made up of contributions
from individual bond polarizabilities (at least to a first approximation), and assume that
these bond polarizabilities show the same qualitative behaviour as in H2 (at least for
� bonds). However, in polyatomic molecules the forms of the vibrations are relatively
complicated and involve, for example, the stretching and compression of more than one
bond. The Raman activity of such a vibration depends on the components of the overall
derived polarizability tensor which is formed by tensor addition of individual derived
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bond polarizability tensors, taking into account the relative phases of the motions in each
bond. It is profitable to consider only very simple polyatomic molecules as examples.

We examine first a linear symmetric molecule ABA. Such a molecule has four modes of
vibration: a symmetric stretching mode Q1, an antisymmetric stretching mode Q2, and two
bending modes Q3a and Q3b which form a degenerate pair and have the same frequency
of vibration. These vibrations are illustrated in Fig. 3.6, and in the following discussion
we shall take the z axis as the bond axis. This ABA molecule has no permanent dipole
because of the symmetry of the electron distribution. For the symmetric stretching mode

+− −
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Figure 3.6 Polarizability and dipole moment variations in the neighbourhood of the equi-
librium position and vibrational Raman and infrared activities for a linear ABA molecule.
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Q1, in which both A–B bonds are stretched simultaneously in one phase and compressed
simultaneously in the other phase, the non-zero bond dipole derivatives in the two A–B
bonds always act in opposition and cancel each other exactly; the vibration is therefore
infrared inactive. However, for this vibration the non-zero bond polarizability derivatives
in the two A–B bonds are additive and the vibration is Raman active. Specifically, as the
axes of the molecular polarizability ellipsoid do not change in this vibration, the molecular
polarizability derivatives �∂˛xx/∂Q1�0 D �∂˛yy/∂Q1�0 and �∂˛zz/∂Q1�0 are non-zero; also,
�∂˛xy/∂Q1�0 D �∂˛yz/∂Q1�0 D �∂˛zx/∂Q1�0 D 0. Thus, �∂a/∂Q1�0 and �∂�/∂Q1�0 are both
non-zero.

The situation is quite different for the antisymmetric stretching mode Q2, in which
one A–B bond is stretched (or compressed) as the other A–B bond is compressed (or
stretched). The non-zero bond dipole derivatives are additive and thus this vibration is
infrared active. However, the bond polarizability derivatives cancel each other and we have
for the molecular polarizability derivatives �∂˛xx/∂Q2�0 D �∂˛yy/∂Q2�0 D �∂˛zz/∂Q2�0 D
�∂˛xy/∂Q2� D �∂˛yz/∂Q2�0 D �∂˛zx/∂Q2�0 D 0 and so �∂a/∂Q2�0 and �∂�/∂Q2�0 are both
zero. Thus, the Q2 mode is Raman inactive.

For the degenerate bending modes Q3a and Q3b, as far as infrared activity is concerned,
it is readily seen that the dipole moment derivatives at right angles to the molecular
axis are non-zero and thus these vibrations are infrared active. However, all six molec-
ular polarizability derivatives are zero for both modes. Thus, �∂a/∂Q3a�0 D �∂a/∂Q3b�0 D
�∂�/∂Q3a�0 D �∂�/∂Q3b�0 D 0 and both modes are Raman inactive. The general forms of
the dipole moment and polarizability changes with the various normal coordinates are
included in Fig. 3.6.

Finally, we consider the case of a non-linear ABA molecule. Such a molecule has three
modes of vibration: Q1, a symmetric stretching mode; Q2, a symmetric bending mode; and
Q3, an antisymmetric stretching mode. The forms of these modes and the axis system are
given in Fig. 3.7. We may perhaps leave it to the reader to endeavour to convince himself
that: (a) Q1 is infrared active and also Raman active with �∂˛xx/∂Q1�0, �∂˛yy/∂Q1�0 and
�∂˛zz/∂Q1�0 non-zero, and �∂˛xy/∂Q1�0 D �∂˛yz/∂Q1�0 D �∂˛zx/∂Q1�0 D 0 so that both
�∂a/∂Q1�0 and �∂�/∂Q1�0 are non-zero; (b) Q2 is also both infrared active and Raman
active with the same dipole and polarizability components non-zero. The case of Q3 calls
for a little more explanation. It is quite easy to see that Q3 is infrared active; Q3 is also
Raman active. This activity arises because the space-fixed z and y axes no longer remain
axes of the polarizability ellipsoid during the whole of the vibration. Thus, although ˛yz
is zero, in the equilibrium configuration �∂˛yz/∂Q3�0 is non-zero. This is the only non-
zero component of the derived polarizability for this mode, and hence �∂a/∂Q3�0 D 0,
although �∂�/∂Q3�0 is non-zero. Figure 3.7 shows the forms of the dipole moment and
polarizability changes with the various normal coordinates.

Comparison of the vibrational activities in the molecules considered above shows that,
for those molecules with a centre of symmetry, those vibrations which are Raman active
are infrared inactive, and vice versa. This can be shown to be a general rule which is often
termed the rule of mutual exclusion. It can form the basis for distinguishing between two
alternative configurations of a molecule, for instance between a linear and a non-linear
configuration for an ABA molecule. In many other cases, it is also possible to distinguish
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Figure 3.7 Polarizability and dipole moment variations in the neighbourhood of the equi-
librium position and vibrational Raman and infrared activities for a non-linear A–B–A
molecule.

between alternative configurations of a molecule by comparing the predicted numbers
of vibrational modes which are Raman and/or infrared active. This has proved to be a
valuable method of structural elucidation. Its main limitation is that, whereas observation
of a band is proof of its activity, the converse is not necessarily true. Some bands, although
permitted in principle, may fail to be observed, either because they are inherently weak or
because of limitations in the experimental technique. A careful study of the literature will
teach the spectroscopist the importance of tempered judgement and guarded optimism!
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Broadly speaking, with molecules of relatively low symmetry all, or nearly all, vibra-
tions are both infrared and Raman active. In molecules containing many atoms this might
be thought to lead to vibrational spectra so rich in bands as to be unintelligible. In fact, in
such molecules many of the vibrational frequencies are very close in value so that bands
overlie each other and a relatively simple spectrum results. Thus even molecules such as
DNA yield vibrational spectra with identifiable and characteristic features.

In some molecules, especially those of high symmetry, some vibrations may be both
infrared and Raman inactive; however, such modes may be active in light-scattering
spectra of non-linear origin, as for example in hyper-Raman spectra.

These qualitative considerations serve to indicate the importance of the symmetry of a
molecule and its vibrational modes in determining infrared and Raman activity. It is also
evident that the qualitative arguments used here would be difficult to apply to more compli-
cated molecules. It would be difficult to infer with certainty the symmetry properties of the
modes of vibration, let alone the behaviour of the dipole moment and the polarizability.
Fortunately, there exist mathematical procedures which enable the symmetry proper-
ties of vibrational modes, dipole moment, and polarizability derivatives for molecules
to be predicted for an assumed equilibrium configuration of the nuclei. We shall consider
how such procedures operate after we have discussed quantum mechanical approaches
to light-scattering phenomena. It should be noted in advance that these new procedures
are completely independent of special assumptions regarding mechanical and electrical
anharmonicity. They are derived solely on the basis of the symmetry of the vibrations and
the electrical properties of the molecules and, consequently, have wide validity. However,
these symmetry arguments tell us nothing about the intensity with which a vibrational
band will appear in infrared or Raman spectra. Once again we emphasize that a vibration,
while formally active, may be so weak as to be undetectable in practice.

3.6 SELECTION RULES FOR OVERTONES AND
COMBINATIONS

In the foregoing we have been concerned entirely with fundamental vibrations; indeed,
in the approximation of mechanical and electrical harmonicity, it would appear that only
fundamental vibrations can occur. When anharmonicities are taken into account, overtone
and combination bands are also permitted. Fortunately, in Raman spectra, unlike infrared
spectra, such bands are almost invariably much weaker than the fundamentals. Vibra-
tional Raman spectra are therefore usually much simpler than infrared spectra. However,
it is worthwhile examining briefly the factors controlling the activity of overtone and
combination bands in the Raman effect.

If mechanical anharmonicity is taken into account, the time dependence of the normal
coordinate Qk will not depend solely on cos�ωkt C υk� as in eq. (3.2.6), but will include
terms involving cos�2ωkt C υ2k�, cos�3ωkt C υ3k� etc., which relate to overtones, and
also terms involving cos�ωkt C υkl� cos�ωlt C υ0

kl� which relate to combination tones. As
a consequence of the presence of these terms, there will be additional induced elec-
tric dipoles with frequencies ω1 š 2ωk etc., and ω1 š �ωk š ωl� etc. Thus, mechanical
anharmonicity can lead to the observation of overtones and combinations in the Raman
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effect. As a0
k is unaffected by the introduction of mechanical anharmonicity, the same

selection rules apply to the overtones and combination tones as to the fundamentals. For
example, in a linear symmetric molecule ABA overtones of ω1 (i.e 2ω1, 3ω1 etc.) would
be Raman active, but not overtones of ω2 or ω3. Similarly, some combinations of ω1 with
ω2 or ω3 would be Raman active, but no combinations of ω2 with ω3.

The situation is different if electrical anharmonicity is taken into account. This means
that the third (and possibly higher) terms in the Taylor series expansion of the polarizability
in terms of the normal coordinates eq. (3.2.2) must be considered. The consequence of this
is that there will again be additional induced electric dipoles with frequencies ω1 š 2ωk

etc. and ω1 š �ωk š ωl� etc., but in this case these dipoles involve a new derived tensor
with components of the type �∂2˛��/∂Q2

k�0, �∂2˛��/∂Qk∂Ql�0 and so on.
Thus overtones and combinations arising from electrical anharmonicity can be Raman

active even if the fundamental vibration is not. For example, in a linear symmetric
molecule ABA, although ω2 and ω3 are not Raman active, 2ω2 and 2ω3 are Raman active
because, as can be seen from Fig. 3.6, although the first derivative of the polarizability is
zero, the second derivative is not for ω2 or ω3.

3.7 COHERENCE PROPERTIES OF RAYLEIGH AND RAMAN
SCATTERING

The classical treatment given earlier in Section 3.2 is based on a single scattering molecule
which, although free to vibrate, is space-fixed in its equilibrium configuration. However
in any experimental study scattering will be observed from a relatively large number of
molecules and their orientations will not necessarily be fixed. For such an assembly of
molecules there is an important difference between Rayleigh and Raman scattering. This
difference arises because, as emphasized in Section 3.3, Rayleigh scattering is in phase
with the incident radiation, whereas Raman scattering‡ bears an arbitrary phase relation
to the incident radiation. This is because the phase of Raman scattering depends on the
phase of the molecular vibration (see eqs. 3.2.15 and 3.2.21) and this to a very good
approximation varies arbitrarily from molecule to molecule. Thus the molecules act as
independent sources of radiation irrespective of the degree of correlation between their
positions. The situation is different for Rayleigh scattering because interference between
the scattering from different molecules is possible and so the structural arrangement of
the scattering molecules will play a role. For example, in the idealized case of a perfect
crystal at absolute zero, this interference could result in the Rayleigh scattering averaging
to zero. The strong dependence of Rayleigh scattering on the state of matter is illustrated
by the fact that Rayleigh scattering from water is only 200 times stronger than from air,
even though water contains 1200 times more molecules in the same volume. However,
for scattering by an ideal gas, Rayleigh scattering is incoherent in non-forward directions
and the intensity scattered by N molecules is simply N times that scattered by a single

‡ This statement specifically excludes higher-order coherent Raman-type processes such as CARS and
CSRS, (see Chapter 1, Section 1.6) and SRGS and SRLS (see Chapter 1, Section 1.7).
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molecule. In the forward direction the situation is less straightforward and depends on
the relative contributions of the isotropic and anisotropic parts of the Rayleigh scattering.

With the coherence properties of Rayleigh and Raman scattering established we could
proceed from the simple case of one space-fixed molecule to an assembly of freely rotating
molecules and calculate the intensity and polarization properties of the scattered radiation
as a function of the illumination–observation geometry.

However, these developments are not pursued here for the classical theory because of
its limited validity, as explained in the next section.

3.8 LIMITATIONS OF THE CLASSICAL THEORY

The classical theory gives the correct frequency dependence for Rayleigh scattering and
vibrational Raman scattering. It also shows, correctly, the dependence of the Rayleigh scat-
tering tensor on the equilibrium polarizability tensor a0, and its prediction of the depen-
dence of the vibrational Raman scattering tensor on the derived polarizability tensor a0

k
turns out to be correct in certain situations. For those who want to use Raman spectroscopy
merely to obtain characteristic molecular vibrational frequencies and use them as molec-
ular signatures for qualitative analysis, the classical theory might be deemed adequate.

However, as might be expected, the classical theory has many limitations. It cannot
be applied to molecular rotations as classical theory does not ascribe specific discrete
rotational frequencies to molecules. The result for the vibrational Raman scattering tensor
given by eq. (3.2.17) is only partly correct. When quantum mechanics is used for the
treatment of molecular vibrations, the classical amplitude Qk is replaced by a quantum
mechanical amplitude. Also, the classical theory cannot provide information as to how a0

k
is related to the properties of the scattering molecule, in particular its characteristic transi-
tion frequencies, and to the frequency of the incident radiation. The quantum mechanical
theory which will be developed in subsequent chapters provides this information and
forms the basis for a complete treatment of all aspects of Raman scattering. This treat-
ment will reveal Raman scattering as a powerful and versatile tool which can be used to
determine molecular parameters and to explore in some detail the spectroscopic properties
not only of the ground electronic state but also of upper electronic states of molecules.
Like our own signatures, Raman spectra, when properly analysed, can reveal much about
the character as well as the identity of the molecular signatory.

3.9 EXAMPLE OF RAYLEIGH AND RAMAN SCATTERING

In this section and the following one, both of which deal with observed spectra, we
use wavenumber Q	 instead of the angular frequency ω which was appropriate for the
theoretical treatment earlier in this chapter.

The phenomena of Rayleigh and Raman scattering are illustrated in Fig. 3.8,
which includes facsimiles of two of the first spectra published by Raman and
Krishnan. Figure 3.8(a) shows the photographically recorded spectrum of the essentially
monochromatic radiation from a mercury arc used to produce the scattering; the
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Figure 3.8 (a) Spectrum of a mercury arc in the region of 4358.3 Å (435.83 nm,
Q	1 D 22 938 cm�1. (b) Rayleigh and Raman spectra of carbon tetrachloride (liquid) excited
by mercury arc radiation, Q	1 D 22 938 cm�1. (c) Rayleigh and Raman spectra of carbon
tetrachloride (liquid) excited by an argon ion laser, Q	1 D 20 487 cm�1 (4879.9 Å, 487.99 nm)
and recorded directly. The spectra in (a) and (b) are facsimiles of spectra reported by Raman
and Krishnan (1929) and were photographically recorded.
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spectrum has one intense line‡ at wavenumber Q	1 D 22 938 cm�1 (or wavelength 4358.3 Å,
435.83 nm). The mercury spectrum contains other lines in this region, but they are
much weaker and need not be considered here. Figure 3.8(b) shows the photographically
recorded spectrum of the radiation after scattering by carbon tetrachloride (liquid). This
spectrum contains a strong band‡ at Q	1 D 22938 cm�1 due to Rayleigh scattering of the
incident radiation, and a number of weaker bands whose absolute wavenumbers conform
to the pattern Q	1 š Q	M and are given by Q	1 š 218, Q	1 š 314, Q	1 š 459, Q	1 � 762 and
Q	1 � 790 cm�1. The first three pairs of bands arise from Stokes and anti-Stokes Raman
scattering associated with Q	M values of 218, 314 and 459 cm�1. The remaining two bands
arise from Stokes Raman scattering associated with Q	M values of 762 and 790 cm�1; the
corresponding anti-Stokes bands are not observed. The Q	M values relate to fundamental
vibrations of the carbon tetrachloride molecule.

Rayleigh and Raman scattering are now invariably excited by monochromatic radiation
from a suitable laser and recorded directly, for example, photoelectrically. For comparison
with Fig. 3.8(b), the Rayleigh and Raman spectra of carbon tetrachloride (liquid) excited
with 20 487 cm�1 radiation (4879.9 Å, 487.99 nm) from an argon ion laser and directly
recorded are shown in Fig. 3.8(c). In addition to all the bands observed previously, this
spectrum contains the anti-Stokes bands at Q	1 C 762 and Q	1 C 790 cm�1, which were
missing from the spectrum in Fig. 3.8(b). Their very low intensity explains why they
were not observed in the early work.

The patterns of bands observed in the spectra in Figs. 3.8(b) and 3.8(c) are entirely
consistent with the theory developed in Sections 3.2 and 3.3. These spectra also show that
Rayleigh scattering is much more intense than Raman scattering, and that Stokes Raman
scattering is more intense than anti-Stokes Raman scattering with the ratio of the intensity
of anti-Stokes to Stokes Raman scattering decreasing rapidly as Q	M increases. However,
in order to interpret and understand these observations and other characteristic properties
of the scattered radiation which can be measured by appropriately designed experiments,
a knowledge of the theoretical developments treated in subsequent chapters is required.

3.10 PRESENTATION OF RAMAN SPECTRA

For a given Raman band let us denote its absolute peak wavenumber by Q	0 and define its
wavenumber shift from Q	1, the wavenumber of the exciting radiation, as Q	 D Q	1 � Q	0. With
this definition Q	 is positive for Stokes Raman scattering �Q	0 D Q	1 � Q	M� and negative for
anti-Stokes Raman scattering �Q	0 D Q	1 C Q	M�. The characteristic molecular property, the
wavenumber§ Q	M is given by jQ	j; for Stokes Raman scattering Q	 D Q	M.

Raman spectra are normally presented in terms of Q	 and not Q	0 unless some depend-
ence on Q	0 needs to be emphasized. For Stokes Raman scattering Q	M can be used as an
equivalent alternative to Q	. It has been recommended by IUPAC that Raman spectra
should be plotted with the abscissa linear in the wavenumber shift Q	 (unit: cm�1)
increasing to the left, and the ordinate linear and proportional to the intensity. As an

‡ See Chapter 1, Section 1.8.
§ See also Chapter 1, pages 4 and 5.
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Figure 3.9 Rayleigh and Raman spectra of carbon tetrachloride (liquid) presented according
to IUPAC recommendations. Note that normally only Stokes Raman bands are studied. It is
then acceptable to label the abscissa as wavenumber/cm�1.

example the directly recorded Raman spectrum of Fig. 3.8(c), which has the wavenumber
shift increasing to the right in order to match the photographically recorded Raman spec-
trum of Fig. 3.8(b), has been redrawn in Fig. 3.9 to conform with the recommended
conventions. The use of a quotient of a physical quantity and a unit, that is quantity
calculus, in the labelling of the wavenumber axis should be noted. This practice means
that the values of the quantities are presented as pure numbers. Quantity calculus should
also be used for the intensity axis when the intensity has a specific unit; otherwise, the
ordinate axis should be labelled ‘intensity’ with an arrow indicating that the intensity
increases upwards as in Fig. 3.9.

For illustrative Raman spectra specially prepared for this book we shall follow the
IUPAC conventions but Raman spectra taken from the literature will not be redrawn for
conformity.
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